• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1380
  • 529
  • 395
  • 188
  • 130
  • 38
  • 38
  • 32
  • 30
  • 24
  • 19
  • 12
  • 11
  • 11
  • 11
  • Tagged with
  • 3548
  • 400
  • 387
  • 380
  • 378
  • 329
  • 303
  • 301
  • 279
  • 262
  • 247
  • 240
  • 227
  • 147
  • 143
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Representative Environments for Reduced Estimation Time of Wide Area Acoustic Performance

Fabre, Josette 14 May 2010 (has links)
Advances in ocean modeling (Barron et al., 2006) have improved such that ocean forecasts and even ensembles (e.g., Coelho et al., 2009) representing ocean uncertainty are becoming more widely available. This facilitates nowcasts (current time ocean fields / analyses) and forecasts (predicted ocean fields) of acoustic propagation conditions in the ocean which can greatly improve the planning of acoustic experiments. Modeling of acoustic transmission loss (TL) provides information about how the environment impacts acoustic performance for various systems and system configurations of interest. It is, however, very time consuming to compute acoustic propagation to and from many potential source and receiver locations for multiple locations on an area-wide grid for multiple analysis / forecast times, ensembles and scenarios of interest. Currently, to make such wide area predictions, an area is gridded and acoustic predictions for multiple directions (or radials) at each grid point for a single time period or ensemble, are computed to estimate performance on the grid. This grid generally does not consider the environment and can neglect important environmental acoustic features or can overcompute in areas of environmental acoustic isotropy. This effort develops two methods to pre-examine the area and time frame in terms of the environmental acoustics in order to prescribe an environmentally optimized computational grid that takes advantage of environmental-acoustic similarities and differences to characterize an area, time frame and ensemble with fewer acoustic model predictions and thus less computation time. Such improvement allows for a more thorough characterization of the time frame and area of interest. The first method is based on critical factors in the environment that typically indicate acoustic response, and the second method is based on a more robust full waveguide mode-based description of the environment. Results are shown for the critical factors method and show that this proves to be a viable solution for most cases studied. Limitations are at areas of high loss, which may not be of concern for exercise planning. The mode-based method is developed for range independent environments and shows significant promise for future development.
192

Energy Quantity Estimation in Radiated Acoustic Fields

Whiting, Eric B. 01 September 2016 (has links)
Energy quantities, which are calculated from pressure and particle velocity, yield a great deal of information about acoustic fields. Errors in pressure or particle velocity estimation lead to bias errors the estimation of energy quantities. The bias errors arise from different probe configurations and processing methods. Two processing methods are examined: the traditional method and the recently developed Phase and Amplitude Gradient Estimation (PAGE) method. These two methods are compared to investigate how each estimates pressure and particle velocity and the subsequent bias errors in a plane wave, standing wave, and spherical spreading wave field. Analytical expressions are derived for the energy quantity estimation using ideal one-dimensional probes. A simulation of the field from a baffled circular piston and measurements using ideal two-dimensional probes is computed. Compared to the traditional method, the PAGE method significantly extends the range of frequencies for which the results are accurate. It is found that a probe with a center microphone significantly reduces the estimation error and extends the usable range of frequencies. The PAGE method with unwrapping, perfectly matches the analytical results for plane waves, while the traditional method is only good at wavelengths that are large compared to the probe size. Furthermore, the PAGE method has a constant bias error in spherical wave fields due to the 1/r decrease in pressure. The traditional method has a frequency dependent bias error that is much worse at higher frequencies. Lastly, the PAGE method has the same or worse error for the standing wave. As an application of energy quantities, acoustic intensity is used to develop an equivalent source model for jet noise from an F-22 at military and afterburner engine conditions. An optimization is used to find the best-matching wavepacket model for measured intensity vectors. The results are compared to another intensity method of estimating the source region and source directivity, and the two methods have good agreement.
193

Structural acoustic optimization of a composite cylindrical shell

Johnson, Wayne Michael 07 June 2004 (has links)
No description available.
194

Predicting acoustic intensity fluctuations induced by nonlinear internal waves in a shallow water waveguide

Sagers, Jason Derek 20 November 2012 (has links)
Many problems in shallow water acoustics require accurate predictions of the acoustic field in space and time. The accuracy of the predicted acoustic field depends heavily on the accuracy of the inputs to the propagation model. Oceanographic internal waves are known to introduce considerable temporo-spatial variability to the water column, subsequently affecting the propagation of acoustic waves. As a result, when internal waves are present, errors in model inputs can significantly degrade the accuracy of the predicted acoustic field. Accurate temporo-spatial predictions of the acoustic field in the presence of internal waves therefore depend largely on one's ability to accurately prescribe the water column properties for the acoustic model. This work introduces a data-driven oceanographic model, named the evolutionary propagated thermistor string (EPTS) model, that captures the temporo-spatial evolution of the internal wave field along a fixed track, thereby permitting prediction of temporal fluctuations in the acoustic field. Simultaneously-measured oceanographic and acoustic data from the Office of Naval Research Shallow Water 2006 experiment are utilized in this work. Thermistor measurements, recorded on four oceanographic moorings spaced along the continental shelf, provide the data from which the EPTS model constructs the internal wave field over a 30 km track. The acoustic data were acquired from propagation measurements over a co-located path between a moored source and a vertical line array. Acoustic quantities computed in the model space, such as received level, depth-integrated intensity, and scintillation index are directly compared to measured acoustic quantities to evaluate the fidelity of the oceanographic model. In addition, a strong correlation is observed between the amplitude of the internal wave field and acoustic intensity statistics at a distant receiving array. It is found that the EPTS model possessed sufficient fidelity to permit the prediction of acoustic intensity distributions in the presence of nonlinear internal waves. / text
195

A critical analysis of the acoustic emmission technique for NDE of pressure vessels /

Shum, Pak W., January 1992 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references (leaves 84-86). Also available via the Internet.
196

Design of an acoustic data storage tag for long range fish tracking in the ocean /

Lee, Sangmok. January 2004 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2004. / Typescript. Includes bibliographical references (leaves 118-121).
197

Development of an acoustic data storage tag for long range fish tracking in the ocean /

Obara, Michael J. January 2003 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2003. / Typescript. Includes bibliographical references (leaves 148-152).
198

Applications of acoustic measurements in shale stability research /

Davidson, James Alexander, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 169-173). Available also in a digital version from Dissertation Abstracts.
199

Optical fiber detection of ultrasonic vibration and acoustic emission /

Nau, Gregory Merrill. January 1992 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references (leaves 63-65). Also available via the Internet.
200

An acoustical study of the properties and behaviour of sea ice

Xie, Yunbo January 1991 (has links)
The primary goal of this thesis is to utilize acoustical radiation from the Arctic ice cover to infer the response of sea ice to environmental forcing, and to sense remotely the mechanical properties of the ice. The work makes use of two experiments in the Canadian arctic undertaken by the Ocean Acoustics Group of the Institute of Ocean Sciences, which resulted in an extensive body of acoustical and related environmental data. Cracking sounds originating from both first and multi-year ice fracturing processes are analyzed. Data used in this thesis also include sound made by artificial sources. The survey of in situ ice conditions by air photography and synthetic radar imaging, and a crack distribution map based on observations made with a 3-D hydrophone array, reveal, for the first time, a close correlation between thermal cracking events and ice type. It is shown that most of the thermal cracks occur in irregular multi-year ice where there are exposed, snow-free surfaces. The study shows that acoustical radiation from some cracks implies a slip-stick seismic movement over the faults, and some cracks tend to radiate more high frequency sound downwards rather than sideways. This phenomenon is most clearly apparent in sounds made by artificial sources. Another interesting finding from this study is that the sound of cracking ice does not always exhibit a vertical dipole radiation pattern, and some cracks due to thermal tension on smooth first year ice radiate more energy horizontally. The observations have motivated the development of various analytical models. These models allow the observed acoustical features to be related to the length and depth of a crack, the thickness of the ice cover and its Young's modulus. The models also show that maximum sound radiation from a crack is in the direction of external forcing. Finally, it is found that noise due to rubbing between ice floes exhibits a narrow band spectrum. This phenomenon is investigated and a linear model derived shows that the observed peak frequency is that of the first mode horizontal shear wave triggered by frictional effects at the ice floe edge. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate

Page generated in 0.0355 seconds