• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

F-Note Acoustic Efficiency of an Upright Piano over Seven Octaves

Bang, Seok Jae 13 May 2009 (has links)
Pianos are machines. Their sound output is determined by acoustic efficiency which is a measure of acoustic energy produced per input mechanical work. The piano as an instrument is unique from other chordophones like violins and guitars as it uses hammers to cause string vibrations. Where work is done directly on the strings in a guitar, pianos utilize a two-step procedure in converting mechanical work into acoustic energy. First, mechanical energy is used to depress a piano key which lifts a hammer. Second, this hammer strikes the strings and acoustic energy is produced. Thus, pianos should be less efficient than strict chordophones. An index of acoustic efficiency as a function of frequency was generated using an F-note from each of the seven full octaves of a Yamaha upright piano (T118PE). Experimental results indicate an inversely proportional relationship between acoustic efficiency and key frequency.
2

Heated Supersonic Jet Characteristics From Far-field Acoustical Measurements

Christian, Matthew Austin 21 November 2023 (has links) (PDF)
In the field of supersonic jet noise, measurements of full-scale afterburning jet engines are infrequent and provide unique opportunities to better understand jet noise phenomena. This thesis represents a phenomenological jet noise analysis using far-field noise data collected from a T-7A-installed GE F404-103 turbofan engine. One issue with the far-field acoustic data from the T-7A was the effects of ground reflections present in the spectra generated from the measured waveforms. A previously developed ground reflection model was implemented into the data to account for this interference. This work represents the first time this model has been implemented in data collected from a full-scale aircraft. Spectra and spatiospectral maps are used to show that, while imperfect, this model represents a step in the right direction for accounting for ground reflections. From the ground reflection-corrected data, sound power values were calculated at varying engine powers. These values were compared against mechanical power values calculated using provided engine parameters at the corresponding engine conditions. It is shown that the observed increase in sound power with mechanical power at supersonic engine conditions follows classical jet noise theory, while the increase between transonic engine conditions is much greater than predicted by classical jet noise theory. This divergence is currently unexplained. Finally, far-field noise directivity measured from the T-7A is connected back to both physics-based and empirically derived definitions of the convective Mach number, a dimensionless parameter used to describe the velocities of coherent structures in the turbulent mixing layer of a jet. For supersonic jets, where Mach wave radiation is the dominant noise source, the convective Mach number should be useful for predicting peak directivity angles. The evaluated definitions show that the convective Mach number associated with Kelvin-Helmholtz instability waves best predicts the peak directivity of the T-7A.

Page generated in 0.0476 seconds