• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ice thickness estimation using low frequencies, and an investigation of diffraction of sound in samples with micro structures using ultrasound

Shaw, Anurupa 07 January 2016 (has links)
In the first section, the thickness of ice on the lakes and canals is estimated by analyzing the sound spectrum generated by dispersion of Lamb type waves propagating in ice. In winters when the lakes and canals freeze, it is important to know the thickness of the ice layer before setting foot on it. When a stone is thrown on the ice layer, a fluting sound can be heard. This is recorded for different thicknesses of ice, and the sound spectrum is compared with the results simulated using a parameterized model. This model is created using a combination of plane waves for different incident angles and frequencies to generate dispersion curves for different thicknesses of ice. The frequencies of the reflected sound are then compared with the frequencies of musical instruments in order to assign different musical notes to different thicknesses of ice. The technique enables thickness estimation without the use of specialized equipment or time consuming drilling and may therefore be of practical value in the preservation of the lives of ice skaters and playing children. In the second half of the study, high frequencies (400 MHz and 1 GHz) are used to investigate samples with micro structures. Acoustic microscopy is a well established technique as far as smooth surfaces are concerned. V (z) curves are obtained from which, through surface wave generation, important features concerning elasticity and related properties can be extracted. Recently, high resolution imaging using high frequency focused transducers, based on acoustic microscopy has appeared. The surface profiles of the samples used in this study, have periodic structures but lack smoothness. The periodicity causes sound diffraction and the roughness influences the acoustic microscopic investigation. The small acoustic contrast between the substrate and the periodic corrugation on the material, gives us information about the additional stresses which develop and affect the bonding between the two materials. In this study, experiments are conducted using samples with corrugations of different periodicity, and a comparison is made between the results for smoother surfaces and results for the periodic structures of the same material. An attempt is made to analyse the effects described above.
2

Quantitative acoustic measurements of strained and layered semiconductor materials

Stoodley, Neil January 1994 (has links)
No description available.
3

An investigation of soft tissue ultrasonic microimaging

Eavis, Joe January 2000 (has links)
No description available.
4

Predicting mechanical performance of adhesively bonded joints based on acousto-ultrasonic evaluation and geometric weighting /

Karhnak, Stephen J., January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 76-78). Also available via the Internet.
5

Effect of orientation on properties of reinforced polypropylene and evaluation of materials with scanning acoustic microscopy

Lisy, Frederick Joseph January 1993 (has links)
No description available.
6

Investigation of the Acoustic Response of a Confined Mesoscopic Water Film Utilizing a Combined Atomic Force Microscope and Shear Force Microscope Technique

Kozell, Monte Allen 17 July 2018 (has links)
An atomic force microscopy beam-like cantilever is combined with an electrical tuning fork to form a shear force probe that is capable of generating an acoustic response from the mesoscopic water layer under ambient conditions while simultaneously monitoring force applied in the normal direction and the electrical response of the tuning fork shear force probe. Two shear force probes were designed and fabricated. A gallium ion beam was used to deposit carbon as a probe material. The carbon probe material was characterized using energy dispersive x-ray spectroscopy and scanning transmission electron microscopy. The probes were experimentally validated by demonstrating the ability to generate and observe acoustic response of the mesoscopic water layer.
7

Quantitative acoustic microscopy of surfaces

Rowe, John M. January 1987 (has links)
No description available.
8

Characterization of Mesoscopic Fluid-like Films with the Novel Shear-force/Acoustic Microscopy

Wang, Xiaohua 01 January 2010 (has links)
The shear force mechanism has been utilized as a distance regulation method in scanning probe microscopes. However, the origin of shear force is still unclear. One of the most important reasons for the shear-force damping is due to the presence of a water contamination layer at the sample surface in ambient conditions. Understanding the behavior of such mesoscopic fluid-like films is of significance for studies of not only scanning probe microscopy but also other complex surface phenomena, such as nanotribology, lubrication, adhesion, wetting, and the microfluidity of biological membranes. This thesis investigates, in particular, the dynamics of mesoscopic fluids confined between two sliding solid boundaries. When fluids are constrained to nanometer-sized regions, their physical properties can greatly differ from those displayed by bulk liquids. To gain an insight into the fundamental characteristics of the confined fluid films, we exploit the versatile capabilities of the novel shear-force/acoustic near-field microscope (SANM), which is able to concurrently and independently monitor the effects of the fluid-mediated interactions acting on both the microscope's probe and the sample to be analyzed. Two signals are monitored simultaneously during each experimental cycle: the tuning fork signal, which is the oscillation amplitude of the probe and gives access to the shear force; and acoustic signal, which is detected by an acoustic sensor placed under the sample. Systematic experiments are carried out to investigate the effects of probe geometry, environmental humidity, and chemical properties of probe and sample surface (water affinity: hydrophobicity or hydrophilicity) on the probe-sample interactions, expressing the influence of the fluid-like contamination films.
9

Characterization of Mesoscopic Fluid Films for Applications in SPM Imaging and Fabrication of Nanostructures on Responsive Materials

Wang, Xiaohua 14 May 2013 (has links)
This dissertation focuses on characterization of the mesoscopic fluid film, testing its behavior in different application scenarios, including its role in near-field scanning probe microscopy imaging, contribution to the phononic mechanism in nanotribology phenomena, utilizing it as a natural environment in the study of carbohydrate-protein interactions, and harnessing it as bridge to transport ions in the fabrication of nanostructures on responsive polymer materials. Due to their high resolution and versatile applications in a variety of fields, the family of scanning probe microscopy (SPM) has found widespread acceptance as an analytical and fabrication tool. However, the working mechanism of SPM that allows maintaining the probe-sample distance constant is still controversial. At the heart the problem is a lack of precise knowledge about the nature of the probe-sample interaction. One key factor is the presence of a mesoscopic fluid-like layer that naturally forms at any surface at ambient condition in which most SPMs are operated. Its mesoscopic nature (~20 nm in thickness) results in extraordinary behavior compared to the properties of bulk liquid. For example, the effective shear viscosity of confined mesoscopic fluids is enhanced, and viscoelastic relaxation times are prolonged. Despite the wide use of SPM techniques in ambient air, the basis of their working mechanisms is still not well understood. The probe-sample interaction is monitored using a combination of tuning-fork based shear force microscopy and our recently developed near-field acoustic technique. To characterize the mesoscopic fluid film a series of experiments are performed under different conditions in order to explore the benefits of having extra probing (acoustic) technique in addition to the shear-force approach. The presence of mesoscopic fluid layers as a natural environment enables the detection of protein-carbohydrate interactions. We demonstrated the capability of our shear-force/acoustic technique to monitor the rupture of chemical bonds between carbohydrate and protein pairs. Finally, we present fabrication of nanostructures via electric-field assisted dip-pen nanolithography by exploiting the responsive feature of a particular class of polymers, where the mesoscopic fluid layer also plays an important role in pattern creation.
10

Shear-Force Acoustic Near-Field Microscopy and Its Implementation in the Study of Confined Mesoscopic Fluids

Brockman, Theodore Alex 16 November 2018 (has links)
The recently developed Shear-Force Acoustic Near-Field Microscope (SANM) is used to investigate the viscoelastic properties of a mesoscopic fluid layer confined between two trapping boundaries, one being a stationary substrate and the other the apex of a laterally oscillating tapered probe. Hardware improvements and evaluation of the SANM-probe robustness will be a major focus of this thesis. The investigation first discusses characterization and recent developments made to the microscope, including: modifications to the sensor head, conditioning of the Nano positioners electrical drive signal, and the assessment of the probe against eventual plastic deformation or compliance against interactions with samples (the latter comprising a solid substrate and its adhered fluid layer which is typically a few monolayers thick). Furthermore, this study includes an analysis of the adsorbed mesoscopic fluid's viscoelastic properties. This inquiry aims to better understand probe-sample interactions with the mesoscopic fluid. This includes adhesion, wetting, and to inquire the nature of the hydrophobic interaction, which is relevant in many areas of study such a protein folding, and interfacial friction which has wide ranging applications including desalination. This analysis will be performed using a Sheer force microscopy (implemented with quartz tuning fork QTF), and another recently introduced technique Whispering Gallery Acoustic Sensor (WGAS). The latter allows more direct monitoring of the QTF's mechanical displacement. These measurements will be supplemented by simultaneously monitoring the acoustic emission from the mesoscopic fluid under confinement between the probe and the substrate, which will be monitored using the SANM sensor positioned beneath the substrate.

Page generated in 0.0909 seconds