• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hardware efficient beamforming and its application to an underwater acoustic data link

Powell, D. G. January 1991 (has links)
No description available.
2

Measurement And Prediction Of Four-pole Parameters And Break-out Noice Of Mufflers

Narayana, T S 03 1900 (has links) (PDF)
No description available.
3

Deslocalização de ondas acústicas em sistemas unidimensionais não periódicos / Deslocalization of acoustic wave in an one-dimensional system non periodic

Costa, Alex Emanuel Barros 24 February 2011 (has links)
In this master degree thesis we numerically study the propagation of acoustic waves in one-dimensional non-periodic medium. We focus on two kinds of medium: (1) a media with scale-free long-range correlated elasticity distribution and (2) medium with an aperiodic pseudo-random elasticity distribution. In the first case, the random elasticity distribution is assumed to have a power spectrum S (k) ~ 1 / kª. By using a transfer matrix method we solve the discrete version of the scalar wave equation and comput the location length. In addition, we apply a second-order infinite-difference method for both the time and spatial variables and study the nature of the waves that propagate in the chain. Our numerical data indicate the presence of extended acoustic waves for high degree of correlations. In contrast with local correlation, we numerically demonstrated that scale-free correlations promote a stable phase of free acoustic waves in the thermodynamic limit. In the another case, elasticity distribution was generated by using a sinusoidal function whose phase varies as a power law, φ α nv, where n labels the positions along the media. By considering again a discrete one-dimensional version of the wave equation and a matrix recursive reformulation we compute the location length within the band of allowed frequencies. Our numerical data indicates the presence of extended acoustic waves with non-zero frequency for a sufficient degree of aperiodicity. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação de mestrado estudamos numericamente a propagação de ondas acústicas em meios não periódicos unidimensionais. Nós nos concentramos em dois tipos de meios: (1) com distribuição da elasticidade possuindo correlação de longo alcance e (2) com distribuição aperiódica pseudo-aleatória. No primeiro caso, a elasticidade da distribuição aleatória é assumida ter um espectro de potência S(k)~1/kª. Usando o método de matriz de transferência resolvemos a versão discreta da equação da onda escalar e calculamos o comprimento de localização. Além disso, aplicamos o método de diferença infinita de segunda ordem para as variáveis temporal e espacial e estudamos a natureza das ondas que se propagem na cadeia. Nossos dados numéricos indicam a presença de ondas acústicas estendidas para alto grau de correlação. Em contraste com correlação local, demonstramos numericamente que correlações de livre-escala promovem uma fase estável com ondas acústicas livres no limite termodinâmico. No outro caso, a distribuição das constantes elásticas foram geradas usando uma função senoidal cuja faze varia como uma lei de potência, ϕ α nv , onde n rotula as posições ao longo da rede. Ao considerar novamente uma versão unidimensional discretizada da equação de onda e uma reformulação da matriz recursiva nós calculamos o comprimento de localização dentro da faixa de frequências permitidas. Nossos dados indicam a presença de ondas acústicas propagantes com frequência diferente de zero para um suficiente grau de aperiodicidade.
4

Une méthode énergétique pour les systèmes vibro-acoustiques couplés / An energy based method for coupled vibro-acoustic systems

Stelzer, Rainer 28 September 2012 (has links)
Ce mémoire de thèse présente le développement de la méthode «statistical modal energy distribution analysis (SmEdA)» pour des systèmes vibro-acoustiques couplés. Cette méthode de calcul est basée sur le bilan énergétique dans des sous-systèmes fermés couplés, comme une structure ou une cavité. L’interaction entre de tels systèmes est décrite par des couplages entre les modes. La version initiale de SmEdA prend en compte seulement les modes qui ont une fréquence propre dans le bande d’excitation. Le travail présenté ici étudie l’effet des modes non résonants sur la réponse et identifie les cas dans lesquels un tel effet devient important. L’introduction des modes non résonants permet d’utiliser la méthode SmEdA dans des cas d’applications plus larges. En outre, une nouvelle méthode de post-traitement a été développée pour calculer des distributions d'énergie dans les sous-systèmes. Finalement, une nouvelle méthode d'approximation pour la prise en compte des modes de systèmes de grandes dimensions ou mal définis a été formulée. Toutes ces méthodes ont été comparées avec d’autres méthodes de calcul via des exemples académiques et industriels. Ainsi, la nouvelle version de SmEdA incluant le post-traitement pour obtenir des distributions d'énergie a été validé et les avantages et possibilités d'applications sont montrés. / This dissertation presents the further development of the statistical modal energy distribution analysis (SmEdA) for vibro-acoustic coupled problems. This prediction method is based on the energy balance in bounded coupled subsystems, like a structure or a cavity. The interaction between such subsystems is described by mode-to-mode coupling. The original SmEdA formulation takes into account only the modes having the eigenfrequencies within the excitation band. The present work investigates the effect of non resonant modes to the response and identifies cases in which such an effect becomes important. The inclusion of non resonant modes has thus resulted in a new SmEdA formulation which can be used in extended applications. Furthermore, a new post-processing method has been developed to predict energy distribution within subsystems. Finally a novel approximation method for handling modes of huge or ill-defined systems has been formulated. All these methods have been compared to other prediction methods via academic and industrial examples. In this way, the extended SmEdA approach including the post-processing for energy distribution has been validated and its advantages and application possibilities have been demonstrated.

Page generated in 0.0669 seconds