• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acoustic cymbal transducers-design, hydrostatic pressure compensation, and acoustic performance

Jenne, Kirk E. 03 1900 (has links)
Approved for public release, distribution is unlimited / Continuing U.S. Navy interest in the development of light-weight, low-volume, broadband, underwater acoustic projectors and receivers is the principal motivation for this research topic. Acoustic cymbal transducers, so named for their geometric similarity to the percussion instruments, are miniature "class V" flextensional transducers that consist of a piezoelectric ceramic drive element bonded to two opposing cymbal-shaped metal shells. Operating as mechanical transformers, the two metal shells convert the naturally large generative force of a piezoelectric ceramic in the radial mode into increased volume displacement at the metal shell surface to obtain usable source levels and sensitivities in a broad frequency range. The magnified displacement makes the acoustic cymbal element a potential alternative to acoustic transduction technologies presently used to generate and receive Navy sonar frequencies. Potential benefits to utilizing this technology are generating or receiving broadband sound, at sonar frequencies in a thin, low volume, conformable package. Applications of this technology have been limited because air-backed acoustic cymbal elements undergo degradation in performance when exposed to elevated hydrostatic pressure (i.e., deep ocean and extreme littoral water applications). This research shows that consistent and reliable acoustic performance can be achieved with cymbal-based transducers at hydrostatic pressures of interest to the Navy. / Civilian, United States Navy

Page generated in 0.1244 seconds