• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using ligand design to probe the redox chemistry of the actinyl ions

Royal, Drew Sebastian January 2011 (has links)
The synthesis and characterisation of a series of {AnO₂}ⁿ⁺ complexes containing multidentate ligand environments is reported. Three novel {UO₂}²⁺ complexes (1-3) containing N₃O₂ linear pentadentate ligands have been prepared and crystallographically characterised. NMR spectroscopy has been able to show that 1-3 are stable with respect to ligand exchange, in a range of solvents. The strength of the O=U=O unit has been probed by vibrational spectroscopy and 1-3 exhibit some of the weakest O=U=O ν₁ stretching modes reported (802-805 cm⁻¹). The cyclic voltammetry (CV) of 1-3 in various solvents (0.1 M [Bu₄N][PF₆]) has been performed and indicate the position and reversibility of the {UO₂}²⁺/{UO₂}⁺ redox couple has been found to be subtly dependent on the solvation environment. {UO₂}²⁺ complexes (4-6) have been prepared by subtle modification of reaction conditions using a rigid N₂O₂S linear pentadentate ligand. Characterisation by X-Ray diffraction reveals different monometallic systems, where 4 and 5 are solely bound to the O₂ donors of the ligand and 6 exhibits uranyl binding through all of the donor atoms in the N₂O₂S cavity. ¹H NMR spectroscopy shows 5 exhibits intramolecular rearrangement on the NMR timescale in DCM, but undergoes intermolecular ligand exchange in more coordinating solvents (DMSO, py). Cyclic voltammetry of 5 in DCM (0.1 M [Bu₄N][PF₆]) also indicates that rearrangements and/or ligand exchange processes may occur at rate comparable to that of the CV studies. Complex 6 exhibits stability with respect to ligand exchange or rearrangement in various solvents and shows comparable solvation environment dependency of the {UO₂}²⁺/{UO₂}⁺ redox couple, relative to 1-3. Three monometallic {UO₂}²⁺ complexes (7-9) have been prepared using a rigid tetradentate N₂O₂ ligand. A dimetallic {UO₂}²⁺ complex (10) where two {UO₂}²⁺ are linked by a 4,4'-bipyridine bridge, has been formed by controlled ligand exchange. Vibrational spectroscopy shows the presence of the O=U=O ν₁ stretch in both the Raman and infrared spectra for 7-10, likely to be caused by distortion of the ligand about the UO₂}²⁺ equatorial plane causing a change in dipole for the O=U=O ν₁ stretching mode. A synthetic and spectroscopic study of neptunyl coordination to N₃O₂ linear pentadentate ligands has been made. Adopting a similar method that was successfully employed in the synthesis of 1-3, resulted in the reduction of {NpO₂}²⁺ to {NpO₂}⁺, giving a series of complexes (11-13). Complex 13 has been crystallographically characterised and shows a monometallic {NpO₂}⁺ complex which is bound to all of the atoms in the N₃O₂ cavity.

Page generated in 0.2039 seconds