• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 8
  • 7
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 47
  • 31
  • 30
  • 27
  • 26
  • 21
  • 19
  • 18
  • 15
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Human detection and action recognition using depth information by Kinect

Xia, Lu, active 21st century 10 July 2012 (has links)
Traditional computer vision algorithms depend on information taken by visible-light cameras. But there are inherent limitations of this data source, e.g. they are sensitive to illumination changes, occlusions and background clutter. Range sensors give us 3D structural information of the scene and it’s robust to the change of color and illumination. In this thesis, we present a series of approaches which are developed using the depth information by Kinect to address the issues regarding human detection and action recognition. Taking the depth information, the basic problem we consider is to detect humans in the scene. We propose a model based approach, which is comprised of a 2D head contour detector and a 3D head surface detector. We propose a segmentation scheme to segment the human from the surroundings based on the detection point and extract the whole body of the subject. We also explore the tracking algorithm based on our detection result. The methods are tested on a dataset we collected and present superior results over the existing algorithms. With the detection result, we further studied on recognizing their actions. We present a novel approach for human action recognition with histograms of 3D joint locations (HOJ3D) as a compact representation of postures. We extract the 3D skeletal joint locations from Kinect depth maps using Shotton et al.’s method. The HOJ3D computed from the action depth sequences are reprojected using LDA and then clustered into k posture visual words, which represent the prototypical poses of actions. The temporal evolutions of those visual words are modeled by discrete hidden Markov models (HMMs). In addition, due to the design of our spherical coordinate system and the robust 3D skeleton estimation from Kinect, our method demonstrates significant view invariance on our 3D action dataset. Our dataset is composed of 200 3D sequences of 10 indoor activities performed by 10 individuals in varied views. Our method is real-time and achieves superior results on the challenging 3D action dataset. We also tested our algorithm on the MSR Action3D dataset and our algorithm outperforms existing algorithm on most of the cases. / text
12

Automatická detekce událostí ve fotbalových zápasech / An automatic football match event detection

Dvonč, Tomáš January 2020 (has links)
This diploma thesis describes methods suitable for automatic detection of events from video sequences focused on football matches. The first part of the work is focused on the analysis and creation of procedures for extracting informations from available data. The second part deals with the implementation of selected methods and neural network algorithm for corner kick detection. Two experiments were performed in this work. The first captures static information from one image and the second is focused on detection from spatio-temporal data. The output of this work is a program for automatic event detection, which can be used to interpret the results of the experiments. This work may figure as a basis to gain new knowledge about the issue and also to the further development of detection events from football.
13

Study Of Human Activity In Video Data With An Emphasis On View-invariance

Ashraf, Nazim 01 January 2012 (has links)
The perception and understanding of human motion and action is an important area of research in computer vision that plays a crucial role in various applications such as surveillance, HCI, ergonomics, etc. In this thesis, we focus on the recognition of actions in the case of varying viewpoints and different and unknown camera intrinsic parameters. The challenges to be addressed include perspective distortions, differences in viewpoints, anthropometric variations, and the large degrees of freedom of articulated bodies. In addition, we are interested in methods that require little or no training. The current solutions to action recognition usually assume that there is a huge dataset of actions available so that a classifier can be trained. However, this means that in order to define a new action, the user has to record a number of videos from different viewpoints with varying camera intrinsic parameters and then retrain the classifier, which is not very practical from a development point of view. We propose algorithms that overcome these challenges and require just a few instances of the action from any viewpoint with any intrinsic camera parameters. Our first algorithm is based on the rank constraint on the family of planar homographies associated with triplets of body points. We represent action as a sequence of poses, and decompose the pose into triplets. Therefore, the pose transition is broken down into a set of movement of body point planes. In this way, we transform the non-rigid motion of the body points into a rigid motion of body point iii planes. We use the fact that the family of homographies associated with two identical poses would have rank 4 to gauge similarity of the pose between two subjects, observed by different perspective cameras and from different viewpoints. This method requires only one instance of the action. We then show that it is possible to extend the concept of triplets to line segments. In particular, we establish that if we look at the movement of line segments instead of triplets, we have more redundancy in data thus leading to better results. We demonstrate this concept on “fundamental ratios.” We decompose a human body pose into line segments instead of triplets and look at set of movement of line segments. This method needs only three instances of the action. If a larger dataset is available, we can also apply weighting on line segments for better accuracy. The last method is based on the concept of “Projective Depth”. Given a plane, we can find the relative depth of a point relative to the given plane. We propose three different ways of using “projective depth:” (i) Triplets - the three points of a triplet along with the epipole defines the plane and the movement of points relative to these body planes can be used to recognize actions; (ii) Ground plane - if we are able to extract the ground plane, we can find the “projective depth” of the body points with respect to it. Therefore, the problem of action recognition would translate to curve matching; and (iii) Mirror person - We can use the mirror view of the person to extract mirror symmetric planes. This method also needs only one instance of the action. Extensive experiments are reported on testing view invariance, robustness to noisy localization and occlusions of body points, and action recognition. The experimental results are very promising and demonstrate the efficiency of our proposed invariants. iv
14

Action Recognition Using Particle Flow Fields

Reddy, Kishore 01 January 2012 (has links)
In recent years, research in human action recognition has advanced on multiple fronts to address various types of actions including simple, isolated actions in staged data (e.g., KTH dataset), complex actions (e.g., Hollywood dataset), and naturally occurring actions in surveillance videos (e.g, VIRAT dataset). Several techniques including those based on gradient, flow, and interest-points, have been developed for their recognition. Most perform very well in standard action recognition datasets, but fail to produce similar results in more complex, large-scale datasets. Action recognition on large categories of unconstrained videos taken from the web is a very challenging problem compared to datasets like KTH (six actions), IXMAS (thirteen actions), and Weizmann (ten actions). Challenges such as camera motion, different viewpoints, huge interclass variations, cluttered background, occlusions, bad illumination conditions, and poor quality of web videos cause the majority of the state-of-the-art action recognition approaches to fail. An increasing number of categories and the inclusion of actions with high confusion also increase the difficulty of the problem. The approach taken to solve this action recognition problem depends primarily on the dataset and the possibility of detecting and tracking the object of interest. In this dissertation, a new method for video representation is proposed and three new approaches to perform action recognition in different scenarios using varying prerequisites are presented. The prerequisites have decreasing levels of difficulty to obtain: 1) Scenario requires human detection and trackiii ing to perform action recognition; 2) Scenario requires background and foreground separation to perform action recognition; and 3) No pre-processing is required for action recognition. First, we propose a new video representation using optical flow and particle advection. The proposed “Particle Flow Field” (PFF) representation has been used to generate motion descriptors and tested in a Bag of Video Words (BoVW) framework on the KTH dataset. We show that particle flow fields has better performance than other low-level video representations, such as 2D-Gradients, 3D-Gradients and optical flow. Second, we analyze the performance of the state-of-the-art technique based on the histogram of oriented 3D-Gradients in spatio temporal volumes, where human detection and tracking are required. We use the proposed particle flow field and show superior results compared to the histogram of oriented 3D-Gradients in spatio temporal volumes. The proposed method, when used for human action recognition, just needs human detection and does not necessarily require human tracking and figure centric bounding boxes. It has been tested on KTH (six actions), Weizmann (ten actions), and IXMAS (thirteen actions, 4 different views) action recognition datasets. Third, we propose using the scene context information obtained from moving and stationary pixels in the key frames, in conjunction with motion descriptors obtained using Bag of Words framework, to solve the action recognition problem on a large (50 actions) dataset with videos from the web. We perform a combination of early and late fusion on multiple features to handle the huge number of categories. We demonstrate that scene context is a very important feature for performing action recognition on huge datasets. iv The proposed method needs separation of moving and stationary pixels, and does not require any kind of video stabilization, person detection, or tracking and pruning of features. Our approach obtains good performance on a huge number of action categories. It has been tested on the UCF50 dataset with 50 action categories, which is an extension of the UCF YouTube Action (UCF11) Dataset containing 11 action categories. We also tested our approach on the KTH and HMDB51 datasets for comparison. Finally, we focus on solving practice problems in representing actions by bag of spatio temporal features (i.e. cuboids), which has proven valuable for action recognition in recent literature. We observed that the visual vocabulary based (bag of video words) method suffers from many drawbacks in practice, such as: (i) It requires an intensive training stage to obtain good performance; (ii) it is sensitive to the vocabulary size; (iii) it is unable to cope with incremental recognition problems; (iv) it is unable to recognize simultaneous multiple actions; (v) it is unable to perform recognition frame by frame. In order to overcome these drawbacks, we propose a framework to index large scale motion features using Sphere/Rectangle-tree (SR-tree) for incremental action detection and recognition. The recognition comprises of the following two steps: 1) recognizing the local features by non-parametric nearest neighbor (NN), and 2) using a simple voting strategy to label the action. It can also provide localization of the action. Since it does not require feature quantization it can efficiently grow the feature-tree by adding features from new training actions or categories. Our method provides an effective way for practical incremental action recognition. Furthermore, it can handle large scale datasets because the SR-tree is a disk-based v data structure. We tested our approach on two publicly available datasets, the KTH dataset and the IXMAS multi-view dataset, and achieved promising results.
15

Spatio-temporal Maximum Average Correlation Height Templates In Action Recognition And Video Summarization

Rodriguez, Mikel 01 January 2010 (has links)
Action recognition represents one of the most difficult problems in computer vision given that it embodies the combination of several uncertain attributes, such as the subtle variability associated with individual human behavior and the challenges that come with viewpoint variations, scale changes and different temporal extents. Nevertheless, action recognition solutions are critical in a great number of domains, such video surveillance, assisted living environments, video search, interfaces, and virtual reality. In this dissertation, we investigate template-based action recognition algorithms that can incorporate the information contained in a set of training examples, and we explore how these algorithms perform in action recognition and video summarization. First, we introduce a template-based method for recognizing human actions called Action MACH. Our approach is based on a Maximum Average Correlation Height (MACH) filter. MACH is capable of capturing intra-class variability by synthesizing a single Action MACH filter for a given action class. We generalize the traditional MACH filter to video (3D spatiotemporal volume), and vector valued data. By analyzing the response of the filter in the frequency domain, we avoid the high computational cost commonly incurred in template-based approaches. Vector valued data is analyzed using the Clifford Fourier transform, a generalization of the Fourier transform intended for both scalar and vector-valued data. Next, we address three seldom explored challenges in template-based action recognition. The first is the recognition and localization of human actions in aerial videos obtained from unmanned aerial vehicles (UAVs), a new medium which presents unique challenges due to the small number of pixels per human, pose, and moving camera. The second issue we address is the incorporation of multiple positive and negative examples of a target action class when generating an action template. We address this issue by employing the Fukunaga-Koontz Transform as a means of generating a single quadratic template which, unlike traditional temporal templates (which rely on positive examples alone), effectively captures the variability associated with an action class by including both positive and negative examples in the template training process. Third, we explore the problem of generating video summaries that include specific actions of interest as opposed to all moving objects. In doing so, we explore the role of action templates in video summarization in an effort to provide a means of generating a compact video representation based on a set of activities of interest. We introduce an approach in which a user specifies the activities that interest him and the video is automatically condensed to a short clip which captures the most relevant events based on the user's preference. We follow the output summary video format of non-chronological video synopsis approaches, in which different events which occur at different times may be displayed concurrently, even though they never occur simultaneously in the original video. However, instead of assuming that all moving objects are interesting, priority is given to specific activities of interest which pertain to a user's query. This provides an efficient means of browsing through large collections of video for events of interest.
16

Hull Convexity Defect Features for Human Action Recognition

Youssef, Menatoallah M. 22 August 2011 (has links)
No description available.
17

Human extremity detection and its applications in action detection and recognition

Yu, Qingfeng 02 June 2010 (has links)
It is proven that locations of internal body joints are sufficient visual cues to characterize human motion. In this dissertation I propose that locations of human extremities including heads, hands and feet provide powerful approximation to internal body motion. I propose detection of precise extremities from contours obtained from image segmentation or contour tracking. Junctions of medial axis of contours are selected as stars. Contour points with a local maximum distance to various stars are chosen as candidate extremities. All the candidates are filtered by cues including proximity to other candidates, visibility to stars and robustness to noise smoothing parameters. I present my applications of using precise extremities for fast human action detection and recognition. Environment specific features are built from precise extremities and feed into a block based Hidden Markov Model to decode the fence climbing action from continuous videos. Precise extremities are grouped into stable contacts if the same extremity does not move for a certain duration. Such stable contacts are utilized to decompose a long continuous video into shorter pieces. Each piece is associated with certain motion features to form primitive motion units. In this way the sequence is abstracted into more meaningful segments and a searching strategy is used to detect the fence climbing action. Moreover, I propose the histogram of extremities as a general posture descriptor. It is tested in a Hidden Markov Model based framework for action recognition. I further propose detection of probable extremities from raw images without any segmentation. Modeling the extremity as an image patch instead of a single point on the contour helps overcome the segmentation difficulty and increase the detection robustness. I represent the extremity patches with Histograms of Oriented Gradients. The detection is achieved by window based image scanning. In order to reduce computation load, I adopt the integral histograms technique without sacrificing accuracy. The result is a probability map where each pixel denotes probability of the patch forming the specific class of extremities. With a probable extremity map, I propose the histogram of probable extremities as another general posture descriptor. It is tested on several data sets and the results are compared with that of precise extremities to show the superiority of probable extremities. / text
18

Activity retrieval in closed captioned videos

Gupta, Sonal 2009 August 1900 (has links)
Recognizing activities in real-world videos is a difficult problem exacerbated by background clutter, changes in camera angle & zoom, occlusion and rapid camera movements. Large corpora of labeled videos can be used to train automated activity recognition systems, but this requires expensive human labor and time. This thesis explores how closed captions that naturally accompany many videos can act as weak supervision that allows automatically collecting 'labeled' data for activity recognition. We show that such an approach can improve activity retrieval in soccer videos. Our system requires no manual labeling of video clips and needs minimal human supervision. We also present a novel caption classifier that uses additional linguistic information to determine whether a specific comment refers to an ongoing activity. We demonstrate that combining linguistic analysis and automatically trained activity recognizers can significantly improve the precision of video retrieval. / text
19

Zero-shot Learning for Visual Recognition Problems

Naha, Shujon January 2016 (has links)
In this thesis we discuss different aspects of zero-shot learning and propose solutions for three challenging visual recognition problems: 1) unknown object recognition from images 2) novel action recognition from videos and 3) unseen object segmentation. In all of these three problems, we have two different sets of classes, the “known classes”, which are used in the training phase and the “unknown classes” for which there is no training instance. Our proposed approach exploits the available semantic relationships between known and unknown object classes and use them to transfer the appearance models from known object classes to unknown object classes to recognize unknown objects. We also propose an approach to recognize novel actions from videos by learning a joint model that links videos and text. Finally, we present a ranking based approach for zero-shot object segmentation. We represent each unknown object class as a semantic ranking of all the known classes and use this semantic relationship to extend the segmentation model of known classes to segment unknown class objects. / October 2016
20

Trajectory Analytics

Santiteerakul, Wasana 05 1900 (has links)
The numerous surveillance videos recorded by a single stationary wide-angle-view camera persuade the use of a moving point as the representation of each small-size object in wide video scene. The sequence of the positions of each moving point can be used to generate a trajectory containing both spatial and temporal information of object's movement. In this study, we investigate how the relationship between two trajectories can be used to recognize multi-agent interactions. For this purpose, we present a simple set of qualitative atomic disjoint trajectory-segment relations which can be utilized to represent the relationships between two trajectories. Given a pair of adjacent concurrent trajectories, we segment the trajectory pair to get the ordered sequence of related trajectory-segments. Each pair of corresponding trajectory-segments then is assigned a token associated with the trajectory-segment relation, which leads to the generation of a string called a pairwise trajectory-segment relationship sequence. From a group of pairwise trajectory-segment relationship sequences, we utilize an unsupervised learning algorithm, particularly the k-medians clustering, to detect interesting patterns that can be used to classify lower-level multi-agent activities. We evaluate the effectiveness of the proposed approach by comparing the activity classes predicted by our method to the actual classes from the ground-truth set obtained using the crowdsourcing technique. The results show that the relationships between a pair of trajectories can signify the low-level multi-agent activities.

Page generated in 0.1088 seconds