Spelling suggestions: "subject:"ctivation (astrochemistry)"" "subject:"ctivation (semiochemistry)""
1 |
Activation of unsaturated NΞN, C=O, and C=C bonds using complexes of ruthenium and rhodiumPage, Michael John, Chemistry, Faculty of Science, UNSW January 2008 (has links)
This thesis describes a broad range of coordination and organometallic chemistry on a series of ruthenium and rhodium complexes towards the aim of activating unsaturated N Ξ N, C=O, and C=C bonds. The dinitrogen complex [RuTp(pzP)(N2)]BPh4 (5) (where Tp= tris(pyrazolyl)borate, and PzP= 1-(2-diphenylphosphinoethyl)pyrazole) was synthesized via displacement of the chloride ligand from the complex [RuTp(pzP)Cl] (1). It was found that N2 coordination proceeded through an unusual oxidation/reduction cycle with the Ru(III) intermediate, [RuTp(pzP)CI]BF4 (6), isolated upon reaction of 1 with AgBF4 in THF. Investigations of the coordination chemistry of the related Tp complex [RuTp(Bp)PPh3] (4) (where Bp= bis(pyrazolyl)borate), resulted in several unusual reactions occurring on the Bp chelate. Reaction of 4 with AgBF4 gave the unusual product [RuTp(BpF')PPh3] (6), which had the Bp B-hydride substituents replaced by fluoride substituents from the BF4 anion, (i.e. BpF,). Alternatively, reaction of 4 with AgOTf, or SOCb, led to the synthesis of the products [RuTp(BpoH)PPh3]OTf (34), and [RuTp(BpoH)PPh3]Cl (35), respectively, which have a single hydroxyl substituent substituted in place of the two B-hydrides to yield a highly unusual neutral borane chelate (BpOH). A series of ruthenium tris(pyrazolyl)methane (Tpm) complexes [RuTpm(PPh3)2Cl]BPh4 (44.BPh4) RuTpm(PPh3CI2] (46), [RuTpm(PPh3)2CI]BPh4 (44.BPh4) [RuTpm(PPh3)(MeCN)Cl]BPh4 (50), [RuTpm(PPh3HMeCN)](BF4)2 (51), [RuTpm(PPh3)(MeCNh](BF4)2 (52), and [RuTpm(MeCNhCI]BPh4 (54.BPh4) were synthesized. These complexes varied in the number of labile acetonitrile ligands they contained, the net charge of the complex, and the presence or absence of strongly coordinating phosphine coligands on the complex. The influence of these properties on the catalytic activity of the complexes for the transfer hydrogenation of acetophenone was investigated. It was shown that the net charge and number of labile MeCN donors on the complex had little influence on the activity of the catalyst. It was also observed that the catalyst [RuTpm(MeCN)2CI]BPh4 (54.BPh4), which does not contain a strongly coordinating PPh3 ligand, would rapidly decompose during catalysis. A series of bis(tert-butylthiomethyl)pyridyl (SNS tBU ) pincer complexes [Ru(SNStBU)(PPh3)Cb] (65), [Ru(SN StBU)(PPh3)(MeCN)CI]BPh4 (66), [Ru(SNStBU)(PPh3)(MeCN)2](BF4h (67), and [Ru(SNStBU)(MeCN)Cb] (68) were synthesized and their as catalysts for the transfer hydrogenation of acetophenone was investigated. The activity of these complexes for as transfer hydrogenation catalysts was shown to increase as the number of labile coligands on the complex increased, with an extremely high transfer hydrogenation activity obtained using 68. The catalytic activity of 68 is one of the fastest to be reported in the literature, achieving a superlative TOF (turnover frequency) of 87360 h- I. The coordination of SNStBu in 66 and the related complexes [Ru(SNS (MeCN)2CI]BPh4 (70), and [Ru(SNS)(MeCN)2CI]2[??-Ag(MeCN)2]2(BF4)4(71) was observed to yield a range of different conformational isomers. These isomers were studied in detail using low temperature NMR and 20 NOESY and COSY IH_1H correlation experiments. The complex 71 was also characterized crystallographically and was shown to have an unusual tetrametallic macrocyclic structure with two [Ru(SNS)(MeCN)2C1r moieties bridged by two [Ag(MeCN)2r ions through a chloro and thioether donor group. The hydrogenation of unsaturated olefinic bonds was achieved using a series of Rh N-heterocyclic carbene (NHC) complexes of the type [Rh(L)(COD)]BPh4 (where L= and NHC-pyrazolyl chelate). A series of NHC-pyrazoly ligands (L) were synthesized that contained varying degrees of steric bulk on the pyrazolyl and NHC donor group. The influence of these steric parameters on the rhodium complex structure and activity of the complexes as catalysts for the hydrogenation of styrene was investigated. It was found that increasing the steric bulk around Rh decreased the activity of the catalyst.
|
2 |
Activation of unsaturated NΞN, C=O, and C=C bonds using complexes of ruthenium and rhodiumPage, Michael John, Chemistry, Faculty of Science, UNSW January 2008 (has links)
This thesis describes a broad range of coordination and organometallic chemistry on a series of ruthenium and rhodium complexes towards the aim of activating unsaturated N Ξ N, C=O, and C=C bonds. The dinitrogen complex [RuTp(pzP)(N2)]BPh4 (5) (where Tp= tris(pyrazolyl)borate, and PzP= 1-(2-diphenylphosphinoethyl)pyrazole) was synthesized via displacement of the chloride ligand from the complex [RuTp(pzP)Cl] (1). It was found that N2 coordination proceeded through an unusual oxidation/reduction cycle with the Ru(III) intermediate, [RuTp(pzP)CI]BF4 (6), isolated upon reaction of 1 with AgBF4 in THF. Investigations of the coordination chemistry of the related Tp complex [RuTp(Bp)PPh3] (4) (where Bp= bis(pyrazolyl)borate), resulted in several unusual reactions occurring on the Bp chelate. Reaction of 4 with AgBF4 gave the unusual product [RuTp(BpF')PPh3] (6), which had the Bp B-hydride substituents replaced by fluoride substituents from the BF4 anion, (i.e. BpF,). Alternatively, reaction of 4 with AgOTf, or SOCb, led to the synthesis of the products [RuTp(BpoH)PPh3]OTf (34), and [RuTp(BpoH)PPh3]Cl (35), respectively, which have a single hydroxyl substituent substituted in place of the two B-hydrides to yield a highly unusual neutral borane chelate (BpOH). A series of ruthenium tris(pyrazolyl)methane (Tpm) complexes [RuTpm(PPh3)2Cl]BPh4 (44.BPh4) RuTpm(PPh3CI2] (46), [RuTpm(PPh3)2CI]BPh4 (44.BPh4) [RuTpm(PPh3)(MeCN)Cl]BPh4 (50), [RuTpm(PPh3HMeCN)](BF4)2 (51), [RuTpm(PPh3)(MeCNh](BF4)2 (52), and [RuTpm(MeCNhCI]BPh4 (54.BPh4) were synthesized. These complexes varied in the number of labile acetonitrile ligands they contained, the net charge of the complex, and the presence or absence of strongly coordinating phosphine coligands on the complex. The influence of these properties on the catalytic activity of the complexes for the transfer hydrogenation of acetophenone was investigated. It was shown that the net charge and number of labile MeCN donors on the complex had little influence on the activity of the catalyst. It was also observed that the catalyst [RuTpm(MeCN)2CI]BPh4 (54.BPh4), which does not contain a strongly coordinating PPh3 ligand, would rapidly decompose during catalysis. A series of bis(tert-butylthiomethyl)pyridyl (SNS tBU ) pincer complexes [Ru(SNStBU)(PPh3)Cb] (65), [Ru(SN StBU)(PPh3)(MeCN)CI]BPh4 (66), [Ru(SNStBU)(PPh3)(MeCN)2](BF4h (67), and [Ru(SNStBU)(MeCN)Cb] (68) were synthesized and their as catalysts for the transfer hydrogenation of acetophenone was investigated. The activity of these complexes for as transfer hydrogenation catalysts was shown to increase as the number of labile coligands on the complex increased, with an extremely high transfer hydrogenation activity obtained using 68. The catalytic activity of 68 is one of the fastest to be reported in the literature, achieving a superlative TOF (turnover frequency) of 87360 h- I. The coordination of SNStBu in 66 and the related complexes [Ru(SNS (MeCN)2CI]BPh4 (70), and [Ru(SNS)(MeCN)2CI]2[??-Ag(MeCN)2]2(BF4)4(71) was observed to yield a range of different conformational isomers. These isomers were studied in detail using low temperature NMR and 20 NOESY and COSY IH_1H correlation experiments. The complex 71 was also characterized crystallographically and was shown to have an unusual tetrametallic macrocyclic structure with two [Ru(SNS)(MeCN)2C1r moieties bridged by two [Ag(MeCN)2r ions through a chloro and thioether donor group. The hydrogenation of unsaturated olefinic bonds was achieved using a series of Rh N-heterocyclic carbene (NHC) complexes of the type [Rh(L)(COD)]BPh4 (where L= and NHC-pyrazolyl chelate). A series of NHC-pyrazoly ligands (L) were synthesized that contained varying degrees of steric bulk on the pyrazolyl and NHC donor group. The influence of these steric parameters on the rhodium complex structure and activity of the complexes as catalysts for the hydrogenation of styrene was investigated. It was found that increasing the steric bulk around Rh decreased the activity of the catalyst.
|
3 |
The molecular mechanism of tissue factor activationChen, Vivien Mun Yee, Medical Sciences, Faculty of Medicine, UNSW January 2007 (has links)
Tissue factor (TF) is the essential cofactor for FVIIa. Binding to transmembrane tissue factor increases the catalytic efficiency of FVIIa allowing activation of FX and FIX which initiates coagulation and propagates stable clot. Transmembrane TF resides in a cryptic configuration on the cell surface and in the circulation with low procoagulant activity. However TF can be rapidly switched to an active configuration in order to contribute to thrombus propagation. The precise nature of this switch is unknown, however it is known to be an extracellular event. The extracellular part of TF consists of 2 fibronectin type III domains. The disulfidebond in the membrane proximal domain (Cys186-Cys209) is a cross-strand bond which links adjacent strands in the same ?? sheet. It has the configuration, characteristic dihedral strain energy and bond length of an allosteric disulfide bond. This indicates that it has the potential to undergo thiol/disulfide exchange to change the function of the TF protein. We confirm that the integrity of the Cys186-Cys209 disulfide is required for coagulant function and that tissue factor contains free thiols in the cryptic state which are lost when TF becomes de-encrypted. Membrane based tissue factor procoagulant activity is blocked by the mono-thiol alkylators N-ethylmaleimide and methyl methanethiosulfonate; but increased by ECl/formation of the disulfide via the thiol oxidiser, HgCb or thiol cross-linkers, eimidohexane and bismalemidoethane. The increase in activity correlates with a conformation change in the TF protein adjacent to the disulfide. We show that redox active protein disulfide isomerase is associated with cryptic tissue factor and propose that the cryptic conformation of tissue factor is maintained through formation of an Snitrosylated complex with protein disulfide isomerase. Our results indicate that the activation of TF involves a change of conformation of the domain 2 of TF caused by formation of the cross-strand Cys186-Cys209 disulfide bond. We suggest that this is likely to be the physiological change that facilitates productive binding of FIX and FX in coagulation.
|
4 |
Activation of unsaturated NΞN, C=O, and C=C bonds using complexes of ruthenium and rhodiumPage, Michael John, Chemistry, Faculty of Science, UNSW January 2008 (has links)
This thesis describes a broad range of coordination and organometallic chemistry on a series of ruthenium and rhodium complexes towards the aim of activating unsaturated N Ξ N, C=O, and C=C bonds. The dinitrogen complex [RuTp(pzP)(N2)]BPh4 (5) (where Tp= tris(pyrazolyl)borate, and PzP= 1-(2-diphenylphosphinoethyl)pyrazole) was synthesized via displacement of the chloride ligand from the complex [RuTp(pzP)Cl] (1). It was found that N2 coordination proceeded through an unusual oxidation/reduction cycle with the Ru(III) intermediate, [RuTp(pzP)CI]BF4 (6), isolated upon reaction of 1 with AgBF4 in THF. Investigations of the coordination chemistry of the related Tp complex [RuTp(Bp)PPh3] (4) (where Bp= bis(pyrazolyl)borate), resulted in several unusual reactions occurring on the Bp chelate. Reaction of 4 with AgBF4 gave the unusual product [RuTp(BpF')PPh3] (6), which had the Bp B-hydride substituents replaced by fluoride substituents from the BF4 anion, (i.e. BpF,). Alternatively, reaction of 4 with AgOTf, or SOCb, led to the synthesis of the products [RuTp(BpoH)PPh3]OTf (34), and [RuTp(BpoH)PPh3]Cl (35), respectively, which have a single hydroxyl substituent substituted in place of the two B-hydrides to yield a highly unusual neutral borane chelate (BpOH). A series of ruthenium tris(pyrazolyl)methane (Tpm) complexes [RuTpm(PPh3)2Cl]BPh4 (44.BPh4) RuTpm(PPh3CI2] (46), [RuTpm(PPh3)2CI]BPh4 (44.BPh4) [RuTpm(PPh3)(MeCN)Cl]BPh4 (50), [RuTpm(PPh3HMeCN)](BF4)2 (51), [RuTpm(PPh3)(MeCNh](BF4)2 (52), and [RuTpm(MeCNhCI]BPh4 (54.BPh4) were synthesized. These complexes varied in the number of labile acetonitrile ligands they contained, the net charge of the complex, and the presence or absence of strongly coordinating phosphine coligands on the complex. The influence of these properties on the catalytic activity of the complexes for the transfer hydrogenation of acetophenone was investigated. It was shown that the net charge and number of labile MeCN donors on the complex had little influence on the activity of the catalyst. It was also observed that the catalyst [RuTpm(MeCN)2CI]BPh4 (54.BPh4), which does not contain a strongly coordinating PPh3 ligand, would rapidly decompose during catalysis. A series of bis(tert-butylthiomethyl)pyridyl (SNS tBU ) pincer complexes [Ru(SNStBU)(PPh3)Cb] (65), [Ru(SN StBU)(PPh3)(MeCN)CI]BPh4 (66), [Ru(SNStBU)(PPh3)(MeCN)2](BF4h (67), and [Ru(SNStBU)(MeCN)Cb] (68) were synthesized and their as catalysts for the transfer hydrogenation of acetophenone was investigated. The activity of these complexes for as transfer hydrogenation catalysts was shown to increase as the number of labile coligands on the complex increased, with an extremely high transfer hydrogenation activity obtained using 68. The catalytic activity of 68 is one of the fastest to be reported in the literature, achieving a superlative TOF (turnover frequency) of 87360 h- I. The coordination of SNStBu in 66 and the related complexes [Ru(SNS (MeCN)2CI]BPh4 (70), and [Ru(SNS)(MeCN)2CI]2[??-Ag(MeCN)2]2(BF4)4(71) was observed to yield a range of different conformational isomers. These isomers were studied in detail using low temperature NMR and 20 NOESY and COSY IH_1H correlation experiments. The complex 71 was also characterized crystallographically and was shown to have an unusual tetrametallic macrocyclic structure with two [Ru(SNS)(MeCN)2C1r moieties bridged by two [Ag(MeCN)2r ions through a chloro and thioether donor group. The hydrogenation of unsaturated olefinic bonds was achieved using a series of Rh N-heterocyclic carbene (NHC) complexes of the type [Rh(L)(COD)]BPh4 (where L= and NHC-pyrazolyl chelate). A series of NHC-pyrazoly ligands (L) were synthesized that contained varying degrees of steric bulk on the pyrazolyl and NHC donor group. The influence of these steric parameters on the rhodium complex structure and activity of the complexes as catalysts for the hydrogenation of styrene was investigated. It was found that increasing the steric bulk around Rh decreased the activity of the catalyst.
|
5 |
Application of solid-state kinetics to desolvation reactionsKhawam, Ammar. January 2007 (has links)
Thesis (Ph. D.)--University of Iowa, 2007. / Supervisor: Douglas R. Flanagan. Includes bibliographical references (leaves 310-319).
|
6 |
Oxygen and sulfur activation at monovalent nickelKieber-Emmons, Matthew Thomas. January 2008 (has links)
Thesis (Ph. D.)--University of Delaware, 2008. / Principal faculty advisor: Charles G. Riordan, Dept. of Chemistry & Biochemistry. Includes bibliographical references.
|
7 |
Selective carbon-carbon bond activation of ethers by rhodium porphyrins. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
*Please refer to dissertation for diagrams. / Part 1 describes the selective C(alpha)-(beta) bonds cleavage of a series of aliphatic ethers (RCH2OCH2R: R = Et, Pr, Bu, iBu and pentyl) by RhII(tmp) using PPh3 as the promoting ligand to give Rh(tmp)-alkyls bearing the C(beta)-substituent in 13-40% yields at 24°C. The rate and the yields of Rh(tmp)-alkyls decreased with increasing steric hindrance of ethers. Addition of bases such as KOtBu, CsOH.H2O and KOH as well as H2O further promoted the product yields of the reactions with n-butyl ether to 56-62%. The reaction between RhII(tmp) and the cyclic ether, oxepane, at 24°C for 1 day gave Rh(tmp)(CH2)5OCHO in 17% yield suggesting that Rh(tmp)OH is the key intermediate in the C-C cleavage step and presumably generated via the PPh3-, H2O-, and OH --assisted disproportionation of RhII(tmp).* / Secondly, the reductive dehydrogenation of Rh(tmp)H to RhII(tmp) was also observed. Rh(tmp)H reacted with KOH in benzene-d6 at 100°C for 1 hour to give RhII(tmp) in 30% yield. [Rh I(tmp)]- is proposed to form initially via the deprotonation of Rh(tmp)H with KOH and then reacts with the unreacted Rh(tmp)H to give Rh II(tmp) via electron transfer. Thirdly, the hydroxide-induced disproportionation of RhII(tmp) to RhIII(tmp)OH and [Rh I(tmp)]- has also been proposed.* / The objective of this thesis focuses on studies of selective, base-promoted aliphatic carbon(alpha)-carbon(beta) bond activation (CCA) of ethers with rhodium(II) and rhodium(III) meso-tetramesitylporphyrin complexes (Rh II(tmp) and Rh(tmp)I). The roles of potassium hydroxide in promoting the interconversions of rhodium porphyrin species (RhII(tmp), Rh(tmp)I, Rh(tmp)OH and Rh(tmp)H) will also be discussed. / Lai, Tsz Ho. / Adviser: Kin Shing Chan. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 161-172). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
8 |
Selective benzylic carbon hydrogen bond activation of toluenes and aromatic carbon halogen bond activation of halobenzenes by rhodium(III) porphyrins.January 2006 (has links)
by Chiu Peng Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 82-87). / Abstracts in English and Chinese. / Table of Contents --- p.i / Acknowledgements --- p.iv / Abbreviations --- p.v / Abstract --- p.vi / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Definition of Carbon Hydrogen Bond Activation (CHA) by Transition Metal Comple --- p.1 x / Chapter 1.2 --- The Importance of Alkane CHA and its Potential Use --- p.1 / Chapter 1.3 --- Difficulties in Alkane CHA --- p.3 / Chapter 1.4 --- The Use of Transition Metal Complexes in CHA Reactions --- p.4 / Chapter 1.5 --- Classification of CHA Reactions --- p.6 / Chapter 1.6 --- The Importance of Toluene and Benzene CHA --- p.11 / Chapter 1.7 --- Difficulties and Challenges in CHA of Toluene --- p.11 / Chapter 1.8 --- Selectivity Control and Rate Promotion --- p.12 / Chapter 1.9 --- Structural Features of Rhodium Porphyrins --- p.17 / Chapter 1.10 --- CHA by Rhodium Porphyrins --- p.19 / Chapter 1.11 --- Objective of Work --- p.21 / Chapter Chapter 2 --- CHA Reactions of Toluenes by Rhodium Porphyrin Chlorides / Chapter 2.1 --- Synthesis of Rhodium Porphyrin Chlorides --- p.22 / Chapter 2.2 --- Temperature Effects of CHA in Toluene --- p.22 / Chapter 2.3 --- Inter and Intra Molecular Exchange of Alkyl Rhodium Porphyrin Complexes --- p.24 / Chapter 2.4 --- Electronic Effect of Rhodium Porphyrin Chlorides --- p.24 / Chapter 2.5 --- Electronic Effect of Toluene Towards CHA --- p.25 / Chapter 2.6 --- X-Ray Data --- p.26 / Chapter 2.7 --- Mechanistic Studies --- p.30 / Chapter 2.8 --- Ligand and Base Effects --- p.32 / Chapter 2.9 --- Optimization of Reaction Conditions --- p.35 / Chapter 2.10 --- Electronic Effect of Toluenes --- p.36 / Chapter 2.11 --- Concentraction Effects of Toluenes (Reactions in Benzene) --- p.38 / Chapter 2.12 --- Porphyrin Effects in CHA of Toluene --- p.39 / Chapter 2.13 --- Mechanistic Studies --- p.40 / Chapter 2.14 --- Conclusion --- p.42 / Chapter 2.15 --- Reaction between Rh(ttp)Me and Toluenes --- p.42 / Chapter 2.16 --- Selective Benzylic CHA --- p.42 / Chapter 2.17 --- Isotope Effect --- p.44 / Chapter 2.18 --- Discussion --- p.44 / Chapter 2.19 --- Exploratory Studies of Other Base-Promoted Reactions --- p.45 / Chapter 2.20 --- Benzylic CHA and Aromatic Carbon Halogen Bond Activation (CXA) Reactions --- p.45 / Chapter 2.21 --- Base-Enhanced Aromatic CXA --- p.48 / Chapter 2.22 --- X-Ray Data --- p.49 / Chapter 2.23 --- Base-Enhanced Benzylic Carbon Carbon Bond Activation (CCA) Reactions --- p.51 / Chapter 2.24 --- Summary --- p.52 / Chapter Chapter 3 --- Experimental Sections --- p.53 / References --- p.82 / Appendix I Crystal Data and Processing Parameters --- p.88 / Appendix II List of Spectra --- p.123 / Spectra --- p.125
|
9 |
Carbon-hydrogen bond and carbon-carbon bond activation of alkanes with rhodium porphyrins. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
Base-promoted CHA of unstrained alkanes with 5,10,15,20-tetratolylporphyrinatorhodium complexes, Rh(ttp)X (X = Cl, H, Rh(ttp)), has been achieved. Rh(ttp)Cl, reacted with n-pentane, n-hexane, n-heptane, c-pentane and c-hexane in the presence of potassium carbonate at 120 °C in 6 to 24 h to give rhodium porphyrin alkyls, Rh(ttp)R, in 29--76% yields. Mechanistic investigations suggested that Rh 2(ttp)2 and Rh(ttp)H are key intermediates for the parallel CHA step. The roles of base are (i) to facilitate the formation of Rh(ttp)Y (Y- = OH-, KCO3 -), (ii) to enhance the CHA rate with alkane and generate Rh(ttp)H by a Rh(ttp)Y species which is more reactive than Rh(ttp)Cl, and (iii) to provide a parallel CHA pathway by Rh2(ttp)2. / c-Octane reacted with Rh(ttp)Cl at 120 °C in 7.5 h in the presence of K2CO3 to yield Rh(ttp)( n-octyl) and Rh(ttp)H in 33% and 58% yields, respectively. Mechanistic investigations indicate that the CCA product is generated from the Rh II(ttp)-catalyzed 1,2-addition of c-octane with Rh(ttp)H. Reaction of c-octane and Rh(ttp)H/Rh2(ttp) 2 (10:1) selectively yielded Rh(ttp)(n-octyl) in 73% at 120 °C in 15 h. The catalyst RhII(ttp) radical cleaves the C-C bond of c-octane to form to a Rh(ttp)-alkyl radical, which then abstracts a hydrogen atom from Rh(ttp)H to generate the Rh(ttp)( n-octyl), and subsequently leading to regeneration of the Rh II(ttp) radical. (Abstract shortened by UMI.) / K2CO3-promoted CHA of the ring-strained cycloheptane with Rh(ttp)Cl at 120 °C in 6 h gave the CHA product Rh(ttp)( c-heptyl) and together with, unexpectedly, the CCA product Rh(ttp)Bn, in 30% and 24% yields, respectively. Mechanistic studies revealed that Rh(ttp)( c-heptyl) undergoes beta-hydride elimination in neutral condition or beta-proton elimination in basic condition followed by reprotonation to give rhodium(III) porphyrin hydride, Rh(ttp)H, and c-heptene. Successive base-promoted CHA of c-heptene with Rh(ttp)H, followed by beta-proton elimination, generates cycloheptatriene. The CHA of cycloheptatriene with Rh(ttp)H formed Rh(ttp)(c-heptatrienyl), which underwent rearrangement with carbon-carbon cleavage at 120 °C in 16 d to yield Rh(ttp)Bn in 96% yield. / The objectives of this research focus on the investigation of carbon-hydrogen bond activation (CHA) and carbon-carbon bond activation (CCA) of alkanes by rhodium porphyrin complexes as well as the mechanistic understanding. / Chan, Yun Wai. / Adviser: Kin Shing Chan. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
10 |
"Nanoporous carbon from corn cobs and its application"Shah, Parag S. January 2007 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed Mar. 19, 2009). Vita. Includes bibliographical references.
|
Page generated in 0.0894 seconds