• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fast model predictive control

Buerger, Johannes Albert January 2013 (has links)
This thesis develops efficient optimization methods for Model Predictive Control (MPC) to enable its application to constrained systems with fast and uncertain dynamics. The key contribution is an active set method which exploits the parametric nature of the sequential optimization problem and is obtained from a dynamic programming formulation of the MPC problem. This method is first applied to the nominal linear MPC problem and is successively extended to linear systems with additive uncertainty and input constraints or state/input constraints. The thesis discusses both offline (projection-based) and online (active set) methods for the solution of controllability problems for linear systems with additive uncertainty. The active set method uses first-order necessary conditions for optimality to construct parametric programming regions for a particular given active set locally along a line of search in the space of feasible initial conditions. Along this line of search the homotopy of optimal solutions is exploited: a known solution at some given plant state is continuously deformed into the solution at the actual measured current plant state by performing the required active set changes whenever a boundary of a parametric programming region is crossed during the line search operation. The sequence of solutions for the finite horizon optimal control problem is therefore obtained locally for the given plant state. This method overcomes the main limitation of parametric programming methods that have been applied in the MPC context which usually require the offline precomputation of all possible regions. In contrast to this the proposed approach is an online method with very low computational demands which efficiently exploits the parametric nature of the solution and returns exact local DP solutions. The final chapter of this thesis discusses an application of robust tube-based MPC to the nonlinear MPC problem based on successive linearization.
2

Estudo e implementação de um método de restrições ativas para problemas de otimização em caixas / Analysis and design of an active-set method for box-constrained optimization

Gentil, Jan Marcel Paiva 23 June 2010 (has links)
Problemas de otimização em caixas são de grande importância, não só por surgirem naturalmente na formulação de problemas da vida prática, mas também por aparecerem como subproblemas de métodos de penalização ou do tipo Lagrangiano Aumentado para resolução de problemas de programação não-linear. O objetivo do trabalho é estudar um algoritmo de restrições ativas para problemas de otimização em caixas recentemente apresentado chamado ASA e compará-lo à versão mais recente de GENCAN, que é também um método de restrições ativas. Para tanto, foi elaborada uma metodologia de testes robusta e minuciosa, que se propõe a remediar vários dos aspectos comumente criticados em trabalhos anteriores. Com isso, puderam ser extraídas conclusões que levaram à melhoria de GENCAN, conforme ficou posteriormente comprovado por meio da metodologia aqui introduzida. / Box-constrained optimization problems are of great importance not only for naturally arising in several real-life problems formulation, but also for their occurrence as sub-problems in both penalty and Augmented Lagrangian methods for solving nonlinear programming problems. This work aimed at studying a recently introduced active-set method for box-constrained optimization called ASA and comparing it to the latest version of GENCAN, which is also an active-set method. For that purpose, we designed a robust and thorough testing methodology intended to remedy many of the widely criticized aspects of prior works. Thereby, we could draw conclusions leading to GENCAN\'s further development, as it later became evident by means of the same methodology herein proposed.
3

Estudo e implementação de um método de restrições ativas para problemas de otimização em caixas / Analysis and design of an active-set method for box-constrained optimization

Jan Marcel Paiva Gentil 23 June 2010 (has links)
Problemas de otimização em caixas são de grande importância, não só por surgirem naturalmente na formulação de problemas da vida prática, mas também por aparecerem como subproblemas de métodos de penalização ou do tipo Lagrangiano Aumentado para resolução de problemas de programação não-linear. O objetivo do trabalho é estudar um algoritmo de restrições ativas para problemas de otimização em caixas recentemente apresentado chamado ASA e compará-lo à versão mais recente de GENCAN, que é também um método de restrições ativas. Para tanto, foi elaborada uma metodologia de testes robusta e minuciosa, que se propõe a remediar vários dos aspectos comumente criticados em trabalhos anteriores. Com isso, puderam ser extraídas conclusões que levaram à melhoria de GENCAN, conforme ficou posteriormente comprovado por meio da metodologia aqui introduzida. / Box-constrained optimization problems are of great importance not only for naturally arising in several real-life problems formulation, but also for their occurrence as sub-problems in both penalty and Augmented Lagrangian methods for solving nonlinear programming problems. This work aimed at studying a recently introduced active-set method for box-constrained optimization called ASA and comparing it to the latest version of GENCAN, which is also an active-set method. For that purpose, we designed a robust and thorough testing methodology intended to remedy many of the widely criticized aspects of prior works. Thereby, we could draw conclusions leading to GENCAN\'s further development, as it later became evident by means of the same methodology herein proposed.
4

Applications of Integer Quadratic Programming in Control and Communication

Axehill, Daniel January 2005 (has links)
<p>The main topic of this thesis is integer quadratic programming with applications to problems arising in the areas of automatic control and communication. One of the most widespread modern control principles is the discrete-time method Model Predictive Control (MPC). The main advantage with MPC, compared to most other control principles, is that constraints on control signals and states can easily be handled. In each time step, MPC requires the solution of a Quadratic Programming (QP) problem. To be able to use MPC for large systems, and at high sampling rates, optimization routines tailored for MPC are used. In recent years, the range of application of MPC has been extended from constrained linear systems to so-called hybrid systems. Hybrid systems are systems where continuous dynamics interact with logic. When this extension is made, binary variables are introduced in the problem. As a consequence, the QP problem has to be replaced by a far more challenging Mixed Integer Quadratic Programming (MIQP) problem. Generally, for this type of optimization problems, the computational complexity is exponential in the number of binary optimization variables. In modern communication systems, multiple users share a so-called multi-access channel, where the information sent by different users is separated by using almost orthogonal codes. Since the codes are not completely orthogonal, the decoded information at the receiver is slightly correlated between different users. Further, noise is added during the transmission. To estimate the information originally sent, a maximum likelihood problem involving binary variables is solved. The process of simultaneously estimating the information sent by multiple users is called multiuser detection. In this thesis, the problem to efficiently solve MIQP problems originating from MPC is addressed. Two different algorithms are presented. First, a polynomial complexity preprocessing algorithm for binary quadratic programming problems is presented. By using the algorithm, some, or all, binary variables can be computed efficiently already in the preprocessing phase. In simulations, the algorithm is applied to unconstrained MPC problems with a mixture of real and binary control signals. It has also been applied to the multiuser detection problem, where simulations have shown that the bit error rate can be significantly reduced by using the proposed algorithm as compared to using common suboptimal algorithms. Second, an MIQP algorithm tailored for MPC is presented. The algorithm uses a branch and bound method where the relaxed node problems are solved by a dual active set QP algorithm. In this QP algorithm, the KKT-systems are solved using Riccati recursions in order to decrease the computational complexity. Simulation results show that both the QP solver and the MIQP solver proposed have lower computational complexity than corresponding generic solvers.</p> / Report code: LiU-TEK-LIC-2005:71.
5

Applications of Integer Quadratic Programming in Control and Communication

Axehill, Daniel January 2005 (has links)
The main topic of this thesis is integer quadratic programming with applications to problems arising in the areas of automatic control and communication. One of the most widespread modern control principles is the discrete-time method Model Predictive Control (MPC). The main advantage with MPC, compared to most other control principles, is that constraints on control signals and states can easily be handled. In each time step, MPC requires the solution of a Quadratic Programming (QP) problem. To be able to use MPC for large systems, and at high sampling rates, optimization routines tailored for MPC are used. In recent years, the range of application of MPC has been extended from constrained linear systems to so-called hybrid systems. Hybrid systems are systems where continuous dynamics interact with logic. When this extension is made, binary variables are introduced in the problem. As a consequence, the QP problem has to be replaced by a far more challenging Mixed Integer Quadratic Programming (MIQP) problem. Generally, for this type of optimization problems, the computational complexity is exponential in the number of binary optimization variables. In modern communication systems, multiple users share a so-called multi-access channel, where the information sent by different users is separated by using almost orthogonal codes. Since the codes are not completely orthogonal, the decoded information at the receiver is slightly correlated between different users. Further, noise is added during the transmission. To estimate the information originally sent, a maximum likelihood problem involving binary variables is solved. The process of simultaneously estimating the information sent by multiple users is called multiuser detection. In this thesis, the problem to efficiently solve MIQP problems originating from MPC is addressed. Two different algorithms are presented. First, a polynomial complexity preprocessing algorithm for binary quadratic programming problems is presented. By using the algorithm, some, or all, binary variables can be computed efficiently already in the preprocessing phase. In simulations, the algorithm is applied to unconstrained MPC problems with a mixture of real and binary control signals. It has also been applied to the multiuser detection problem, where simulations have shown that the bit error rate can be significantly reduced by using the proposed algorithm as compared to using common suboptimal algorithms. Second, an MIQP algorithm tailored for MPC is presented. The algorithm uses a branch and bound method where the relaxed node problems are solved by a dual active set QP algorithm. In this QP algorithm, the KKT-systems are solved using Riccati recursions in order to decrease the computational complexity. Simulation results show that both the QP solver and the MIQP solver proposed have lower computational complexity than corresponding generic solvers. / <p>Report code: LiU-TEK-LIC-2005:71.</p>
6

Tópicos em otimização com restrições lineares / Topics on linearly-constrained optimization

Andretta, Marina 24 July 2008 (has links)
Métodos do tipo Lagrangiano Aumentado são muito utilizados para minimização de funções sujeitas a restrições gerais. Nestes métodos, podemos separar o conjunto de restrições em dois grupos: restrições fáceis e restrições difíceis. Dizemos que uma restrição é fácil se existe um algoritmo disponível e eficiente para resolver problemas restritos a este tipo de restrição. Caso contrário, dizemos que a restrição é difícil. Métodos do tipo Lagrangiano aumentado resolvem, a cada iteração, problemas sujeitos às restrições fáceis, penalizando as restrições difíceis. Problemas de minimização com restrições lineares aparecem com freqüência, muitas vezes como resultados da aproximação de problemas com restrições gerais. Este tipo de problema surge também como subproblema de métodos do tipo Lagrangiano aumentado. Assim, uma implementação eficiente para resolver problemas com restrições lineares é relevante para a implementação eficiente de métodos para resolução de problemas de programação não-linear. Neste trabalho, começamos considerando fáceis as restrições de caixa. Introduzimos BETRA-ESPARSO, uma versão de BETRA para problemas de grande porte. BETRA é um método de restrições ativas que utiliza regiões de confiança para minimização em cada face e gradiente espectral projetado para sair das faces. Utilizamos BETRA (denso ou esparso) na resolução dos subproblemas que surgem a cada iteração de ALGENCAN (um método de lagrangiano aumentado). Para decidir qual algoritmo utilizar para resolver cada subproblema, desenvolvemos regras que escolhem um método para resolver o subproblema de acordo com suas características. Em seguida, introduzimos dois algoritmos de restrições ativas desenvolvidos para resolver problemas com restrições lineares (BETRALIN e GENLIN). Estes algoritmos utilizam, a cada iteração, o método do Gradiente Espectral Projetado Parcial quando decidem mudar o conjunto de restrições ativas. O método do gradiente Espectral Projetado Parcial foi desenvolvido especialmente para este propósito. Neste método, as projeções são computadas apenas em um subconjunto das restrições, com o intuito de torná-las mais eficientes. Por fim, tendo introduzido um método para minimização com restrições lineares, consideramos como fáceis as restrições lineares. Incorporamos BETRALIN e GENLIN ao arcabouço de Lagrangianos aumentados e verificamos experimentalmente a eficiência e eficácia destes métodos que trabalham explicitamente com restrições lineares e penalizam as demais. / Augmented Lagrangian methods are widely used to solve general nonlinear programming problems. In these methods, one can split the set of constraints in two groups: the set of easy and hard constraints. A constraint is called easy if there is an efficient method available to solve problems subject to that kind of constraint. Otherwise, the constraints are called hard. Augmented Lagrangian methods solve, at each iteration, problems subject to the set of easy constraints while penalizing the set of hard constraints. Linearly constrained problems appear frequently, sometimes as a result of a linear approximation of a problem, sometimes as an augmented Lagrangian subproblem. Therefore, an efficient method to solve linearly constrained problems is important for the implementation of efficient methods to solve nonlinear programming problems. In this thesis, we begin by considering box constraints as the set of easy constraints. We introduce a version of BETRA to solve large scale problems. BETRA is an active-set method that uses a trust-region strategy to work within the faces and spectral projected gradient to leave the faces. To solve each iteration\'s subproblem of ALGENCAN (an augmented Lagrangian method) we use either the dense or the sparse version of BETRA. We develope rules to decide which box-constrained inner solver should be used at each augmented Lagrangian iteration that considers the main characteristics of the problem to be solved. Then, we introduce two active-set methods to solve linearly constrained problems (BETRALIN and GENLIN). These methods use Partial Spectral Projected Gradient method to change the active set of constraints. The Partial Spectral Projected Gradient method was developed specially for this purpose. It computes projections onto a subset of the linear constraints, aiming to make the projections more efficient. At last, having introduced a linearly-constrained solver, we consider the set of linear constraints as the set of easy constraints. We use BETRALIN and GENLIN in the framework of augmented Lagrangian methods and verify, using numerical experiments, the efficiency and robustness of those methods that work with linear constraints and penalize the nonlinear constraints.
7

O Método de Newton e a Função Penalidade Quadrática aplicados ao problema de fluxo de potência ótimo / The Newton\'s method and quadratic penalty function applied to the Optimal Power Flow Problem

Costa, Carlos Ednaldo Ueno 18 February 1998 (has links)
Neste trabalho é apresentada uma abordagem do Método de Newton associado à função penalidade quadrática e ao método dos conjuntos ativos na solução do problema de Fluxo de Potência Ótimo (FPO). A formulação geral do problema de FPO é apresentada, assim como a técnica utilizada na resolução do sistema de equações. A fatoração da matriz Lagrangeana é feita por elementos ao invés das estruturas em blocos. A característica de esparsidade da matriz Lagrangeana é levada em consideração. Resultados dos testes realizados em 4 sistemas (3, 14, 30 e 118 barras) são apresentados. / This work presents an approach on Newton\'s Method associated with the quadratic penalty function and the active set methods in the solution of Optimal Power Flow Problem (OPF). The general formulation of the OPF problem is presented, as will as the technique used in the equation systems resolution. The Lagrangean matrix factorization is carried out by elements instead of structures in blocks. The characteristic of sparsity of the Lagrangean matrix is taken in to account. Numerical results of tests realized in systems of 3, 14, 30 and 118 buses are presented to show the efficiency of the method.
8

Tópicos em otimização com restrições lineares / Topics on linearly-constrained optimization

Marina Andretta 24 July 2008 (has links)
Métodos do tipo Lagrangiano Aumentado são muito utilizados para minimização de funções sujeitas a restrições gerais. Nestes métodos, podemos separar o conjunto de restrições em dois grupos: restrições fáceis e restrições difíceis. Dizemos que uma restrição é fácil se existe um algoritmo disponível e eficiente para resolver problemas restritos a este tipo de restrição. Caso contrário, dizemos que a restrição é difícil. Métodos do tipo Lagrangiano aumentado resolvem, a cada iteração, problemas sujeitos às restrições fáceis, penalizando as restrições difíceis. Problemas de minimização com restrições lineares aparecem com freqüência, muitas vezes como resultados da aproximação de problemas com restrições gerais. Este tipo de problema surge também como subproblema de métodos do tipo Lagrangiano aumentado. Assim, uma implementação eficiente para resolver problemas com restrições lineares é relevante para a implementação eficiente de métodos para resolução de problemas de programação não-linear. Neste trabalho, começamos considerando fáceis as restrições de caixa. Introduzimos BETRA-ESPARSO, uma versão de BETRA para problemas de grande porte. BETRA é um método de restrições ativas que utiliza regiões de confiança para minimização em cada face e gradiente espectral projetado para sair das faces. Utilizamos BETRA (denso ou esparso) na resolução dos subproblemas que surgem a cada iteração de ALGENCAN (um método de lagrangiano aumentado). Para decidir qual algoritmo utilizar para resolver cada subproblema, desenvolvemos regras que escolhem um método para resolver o subproblema de acordo com suas características. Em seguida, introduzimos dois algoritmos de restrições ativas desenvolvidos para resolver problemas com restrições lineares (BETRALIN e GENLIN). Estes algoritmos utilizam, a cada iteração, o método do Gradiente Espectral Projetado Parcial quando decidem mudar o conjunto de restrições ativas. O método do gradiente Espectral Projetado Parcial foi desenvolvido especialmente para este propósito. Neste método, as projeções são computadas apenas em um subconjunto das restrições, com o intuito de torná-las mais eficientes. Por fim, tendo introduzido um método para minimização com restrições lineares, consideramos como fáceis as restrições lineares. Incorporamos BETRALIN e GENLIN ao arcabouço de Lagrangianos aumentados e verificamos experimentalmente a eficiência e eficácia destes métodos que trabalham explicitamente com restrições lineares e penalizam as demais. / Augmented Lagrangian methods are widely used to solve general nonlinear programming problems. In these methods, one can split the set of constraints in two groups: the set of easy and hard constraints. A constraint is called easy if there is an efficient method available to solve problems subject to that kind of constraint. Otherwise, the constraints are called hard. Augmented Lagrangian methods solve, at each iteration, problems subject to the set of easy constraints while penalizing the set of hard constraints. Linearly constrained problems appear frequently, sometimes as a result of a linear approximation of a problem, sometimes as an augmented Lagrangian subproblem. Therefore, an efficient method to solve linearly constrained problems is important for the implementation of efficient methods to solve nonlinear programming problems. In this thesis, we begin by considering box constraints as the set of easy constraints. We introduce a version of BETRA to solve large scale problems. BETRA is an active-set method that uses a trust-region strategy to work within the faces and spectral projected gradient to leave the faces. To solve each iteration\'s subproblem of ALGENCAN (an augmented Lagrangian method) we use either the dense or the sparse version of BETRA. We develope rules to decide which box-constrained inner solver should be used at each augmented Lagrangian iteration that considers the main characteristics of the problem to be solved. Then, we introduce two active-set methods to solve linearly constrained problems (BETRALIN and GENLIN). These methods use Partial Spectral Projected Gradient method to change the active set of constraints. The Partial Spectral Projected Gradient method was developed specially for this purpose. It computes projections onto a subset of the linear constraints, aiming to make the projections more efficient. At last, having introduced a linearly-constrained solver, we consider the set of linear constraints as the set of easy constraints. We use BETRALIN and GENLIN in the framework of augmented Lagrangian methods and verify, using numerical experiments, the efficiency and robustness of those methods that work with linear constraints and penalize the nonlinear constraints.
9

O Método de Newton e a Função Penalidade Quadrática aplicados ao problema de fluxo de potência ótimo / The Newton\'s method and quadratic penalty function applied to the Optimal Power Flow Problem

Carlos Ednaldo Ueno Costa 18 February 1998 (has links)
Neste trabalho é apresentada uma abordagem do Método de Newton associado à função penalidade quadrática e ao método dos conjuntos ativos na solução do problema de Fluxo de Potência Ótimo (FPO). A formulação geral do problema de FPO é apresentada, assim como a técnica utilizada na resolução do sistema de equações. A fatoração da matriz Lagrangeana é feita por elementos ao invés das estruturas em blocos. A característica de esparsidade da matriz Lagrangeana é levada em consideração. Resultados dos testes realizados em 4 sistemas (3, 14, 30 e 118 barras) são apresentados. / This work presents an approach on Newton\'s Method associated with the quadratic penalty function and the active set methods in the solution of Optimal Power Flow Problem (OPF). The general formulation of the OPF problem is presented, as will as the technique used in the equation systems resolution. The Lagrangean matrix factorization is carried out by elements instead of structures in blocks. The characteristic of sparsity of the Lagrangean matrix is taken in to account. Numerical results of tests realized in systems of 3, 14, 30 and 118 buses are presented to show the efficiency of the method.
10

Stochastic Combinatorial Optimization / Optimisation combinatoire stochastique

Cheng, Jianqiang 08 November 2013 (has links)
Dans cette thèse, nous étudions trois types de problèmes stochastiques : les problèmes avec contraintes probabilistes, les problèmes distributionnellement robustes et les problèmes avec recours. Les difficultés des problèmes stochastiques sont essentiellement liées aux problèmes de convexité du domaine des solutions, et du calcul de l’espérance mathématique ou des probabilités qui nécessitent le calcul complexe d’intégrales multiples. A cause de ces difficultés majeures, nous avons résolu les problèmes étudiées à l’aide d’approximations efficaces.Nous avons étudié deux types de problèmes stochastiques avec des contraintes en probabilités, i.e., les problèmes linéaires avec contraintes en probabilité jointes (LLPC) et les problèmes de maximisation de probabilités (MPP). Dans les deux cas, nous avons supposé que les variables aléatoires sont normalement distribués et les vecteurs lignes des matrices aléatoires sont indépendants. Nous avons résolu LLPC, qui est un problème généralement non convexe, à l’aide de deux approximations basée sur les problèmes coniques de second ordre (SOCP). Sous certaines hypothèses faibles, les solutions optimales des deux SOCP sont respectivement les bornes inférieures et supérieures du problème du départ. En ce qui concerne MPP, nous avons étudié une variante du problème du plus court chemin stochastique contraint (SRCSP) qui consiste à maximiser la probabilité de la contrainte de ressources. Pour résoudre ce problème, nous avons proposé un algorithme de Branch and Bound pour calculer la solution optimale. Comme la relaxation linéaire n’est pas convexe, nous avons proposé une approximation convexe efficace. Nous avons par la suite testé nos algorithmes pour tous les problèmes étudiés sur des instances aléatoires. Pour LLPC, notre approche est plus performante que celles de Bonferroni et de Jaganathan. Pour MPP, nos résultats numériques montrent que notre approche est là encore plus performante que l’approximation des contraintes probabilistes individuellement.La deuxième famille de problèmes étudiés est celle relative aux problèmes distributionnellement robustes où une partie seulement de l’information sur les variables aléatoires est connue à savoir les deux premiers moments. Nous avons montré que le problème de sac à dos stochastique (SKP) est un problème semi-défini positif (SDP) après relaxation SDP des contraintes binaires. Bien que ce résultat ne puisse être étendu au cas du problème multi-sac-à-dos (MKP), nous avons proposé deux approximations qui permettent d’obtenir des bornes de bonne qualité pour la plupart des instances testées. Nos résultats numériques montrent que nos approximations sont là encore plus performantes que celles basées sur les inégalités de Bonferroni et celles plus récentes de Zymler. Ces résultats ont aussi montré la robustesse des solutions obtenues face aux fluctuations des distributions de probabilités. Nous avons aussi étudié une variante du problème du plus court chemin stochastique. Nous avons prouvé que ce problème peut se ramener au problème de plus court chemin déterministe sous certaine hypothèses. Pour résoudre ce problème, nous avons proposé une méthode de B&B où les bornes inférieures sont calculées à l’aide de la méthode du gradient projeté stochastique. Des résultats numériques ont montré l’efficacité de notre approche. Enfin, l’ensemble des méthodes que nous avons proposées dans cette thèse peuvent s’appliquer à une large famille de problèmes d’optimisation stochastique avec variables entières. / In this thesis, we studied three types of stochastic problems: chance constrained problems, distributionally robust problems as well as the simple recourse problems. For the stochastic programming problems, there are two main difficulties. One is that feasible sets of stochastic problems is not convex in general. The other main challenge arises from the need to calculate conditional expectation or probability both of which are involving multi-dimensional integrations. Due to the two major difficulties, for all three studied problems, we solved them with approximation approaches.We first study two types of chance constrained problems: linear program with joint chance constraints problem (LPPC) as well as maximum probability problem (MPP). For both problems, we assume that the random matrix is normally distributed and its vector rows are independent. We first dealt with LPPC which is generally not convex. We approximate it with two second-order cone programming (SOCP) problems. Furthermore under mild conditions, the optimal values of the two SOCP problems are a lower and upper bounds of the original problem respectively. For the second problem, we studied a variant of stochastic resource constrained shortest path problem (called SRCSP for short), which is to maximize probability of resource constraints. To solve the problem, we proposed to use a branch-and-bound framework to come up with the optimal solution. As its corresponding linear relaxation is generally not convex, we give a convex approximation. Finally, numerical tests on the random instances were conducted for both problems. With respect to LPPC, the numerical results showed that the approach we proposed outperforms Bonferroni and Jagannathan approximations. While for the MPP, the numerical results on generated instances substantiated that the convex approximation outperforms the individual approximation method.Then we study a distributionally robust stochastic quadratic knapsack problems, where we only know part of information about the random variables, such as its first and second moments. We proved that the single knapsack problem (SKP) is a semedefinite problem (SDP) after applying the SDP relaxation scheme to the binary constraints. Despite the fact that it is not the case for the multidimensional knapsack problem (MKP), two good approximations of the relaxed version of the problem are provided which obtain upper and lower bounds that appear numerically close to each other for a range of problem instances. Our numerical experiments also indicated that our proposed lower bounding approximation outperforms the approximations that are based on Bonferroni's inequality and the work by Zymler et al.. Besides, an extensive set of experiments were conducted to illustrate how the conservativeness of the robust solutions does pay off in terms of ensuring the chance constraint is satisfied (or nearly satisfied) under a wide range of distribution fluctuations. Moreover, our approach can be applied to a large number of stochastic optimization problems with binary variables.Finally, a stochastic version of the shortest path problem is studied. We proved that in some cases the stochastic shortest path problem can be greatly simplified by reformulating it as the classic shortest path problem, which can be solved in polynomial time. To solve the general problem, we proposed to use a branch-and-bound framework to search the set of feasible paths. Lower bounds are obtained by solving the corresponding linear relaxation which in turn is done using a Stochastic Projected Gradient algorithm involving an active set method. Meanwhile, numerical examples were conducted to illustrate the effectiveness of the obtained algorithm. Concerning the resolution of the continuous relaxation, our Stochastic Projected Gradient algorithm clearly outperforms Matlab optimization toolbox on large graphs.

Page generated in 0.1103 seconds