• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O uso do método de análise de ondas superficiais empregando fontes passivas e ativas / THE USE OF THE SURFACE WAVES ANALYSIS METHOD EMPLOYING PASSIVE AND ACTIVE SOURCES

Julio Cesar Ardito 25 June 2013 (has links)
O método da análise multicanal de ondas superficiais foi empregado em um estudo de caso no sítio controlado do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo - IAG-USP, localizado no campus Butantã, São Paulo, em terrenos da bacia sedimentar de São Paulo. O estudo visou à investigação geológica rasa, ou seja, ao mapeamento dos estratos sedimentares presentes e do contato sedimentos-embasamento. Além disso, procurou-se, através de testes de diversos parâmetros de aquisição, chegar-se a uma rotina para a aquisição e tratamento dos dados provenientes de fontes ativas (marreta e queda de peso) e passivas (tráfego de veículos) que possa ser indicada para ensaios em outras áreas da cidade de São Paulo que apresentem condições semelhantes às da área estudada. Na aquisição com fontes ativas foram registrados dados com diversos offsets mínimos e na passiva foi aplicada a técnica Passive Roadside com o arranjo de geofones disposto próximo e paralelamente à via de tráfego. Foram realizadas as etapas de pré-processamento dos dados, geração das imagens de dispersão, extração das curvas de dispersão e inversão. A combinação de imagens geradas a partir de dados adquiridos com diferentes fontes resultou numa imagem com melhor razão sinal-ruído, e consequentemente na produção de melhores curvas que foram invertidas para a geração dos perfis 1D das velocidades da onda S. De modo geral, os perfis de velocidades obtidos a partir dos dados obtidos com o emprego de uma marreta para geração da onda mapearam as interfaces geológicas mais superficiais, já os perfis resultantes dos dados adquiridos com o uso de uma fonte tipo queda de peso alcançaram profundidades maiores, por vezes amostrando o embasamento. No caso das fontes passivas, as principais interfaces de contato foram imageadas, conseguindo-se com sucesso o mapeamento do embasamento, que na área está a mais de 50 metros de profundidade. Correlações com o perfil litológico e de dados de ensaios SPT de um furo de sondagem localizado no centro do arranjo revelaram que as diferenças na determinação da profundidade das interfaces foram menores do que 10%. Desta forma, o método mostrou ser uma ferramenta prática e eficiente nas aplicações geotécnicas, principalmente em ix áreas urbanas onde o ruído é elevado, o que muitas vezes inviabiliza o uso da investigação sísmica convencional (refração ou reflexão). / The multichannel analysis of surface waves (MASW) method was employed in a case study on the controlled site in the Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG), University of São Paulo (USP), located on the campus Butantã, São Paulo, in the grounds of the sedimentary basin São Paulo. The study aimed to shallow geological investigation, in other words, mapping of sedimentary strata present and the sediment-basement contact. In addition, It is sought to, by testing with different acquisition parameters, to get a routine for the acquisition and processing of data from active sources (sledgehammer and drop weight) and passive (vehicle traffic) that can be suitable for testing in other areas of the city of São Paulo who have similar conditions of the study area. In the acquisition with active sources were registered data with many different offsets and passive acquisition has been applied to the Passive Roadside MASW technique with the conventional linear receiver array disposed near and parallel to the traffic lane. Were performed, pre-processing of the data, generation of images of dispersion, extraction of dispersion curves and inversion. The combination of images generated based on data acquired from various sources resulted in image with improved signal to noise ratio and consequently in the production of finest curves that have been inverted to generate the 1D shear-wave velocities profiles. In general, the velocity profiles obtained from the data were acquired with the use of a sledgehammer to the wave generation mapped shallowest geological interfaces, but the resulting profiles of the acquired data using a font type \"drop weight\" reached greater depths, sometimes sampling the basement. In the case of passive sources, the main contact interfaces were imaged, achieving successful mapping of the basement, which in this area is over 50 meters deep. Correlations with the lithological profile and SPT data from a borehole located in the center of the array revealed that the differences in the depth determination of the interfaces was less than 10%. Thus, the method showed to be an efficient and practical tool in geotechnical applications, especially in urban areas where the noise is high, which often prevents the use of conventional seismic survey (reflection or refraction).
2

O uso do método de análise de ondas superficiais empregando fontes passivas e ativas / THE USE OF THE SURFACE WAVES ANALYSIS METHOD EMPLOYING PASSIVE AND ACTIVE SOURCES

Ardito, Julio Cesar 25 June 2013 (has links)
O método da análise multicanal de ondas superficiais foi empregado em um estudo de caso no sítio controlado do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo - IAG-USP, localizado no campus Butantã, São Paulo, em terrenos da bacia sedimentar de São Paulo. O estudo visou à investigação geológica rasa, ou seja, ao mapeamento dos estratos sedimentares presentes e do contato sedimentos-embasamento. Além disso, procurou-se, através de testes de diversos parâmetros de aquisição, chegar-se a uma rotina para a aquisição e tratamento dos dados provenientes de fontes ativas (marreta e queda de peso) e passivas (tráfego de veículos) que possa ser indicada para ensaios em outras áreas da cidade de São Paulo que apresentem condições semelhantes às da área estudada. Na aquisição com fontes ativas foram registrados dados com diversos offsets mínimos e na passiva foi aplicada a técnica Passive Roadside com o arranjo de geofones disposto próximo e paralelamente à via de tráfego. Foram realizadas as etapas de pré-processamento dos dados, geração das imagens de dispersão, extração das curvas de dispersão e inversão. A combinação de imagens geradas a partir de dados adquiridos com diferentes fontes resultou numa imagem com melhor razão sinal-ruído, e consequentemente na produção de melhores curvas que foram invertidas para a geração dos perfis 1D das velocidades da onda S. De modo geral, os perfis de velocidades obtidos a partir dos dados obtidos com o emprego de uma marreta para geração da onda mapearam as interfaces geológicas mais superficiais, já os perfis resultantes dos dados adquiridos com o uso de uma fonte tipo queda de peso alcançaram profundidades maiores, por vezes amostrando o embasamento. No caso das fontes passivas, as principais interfaces de contato foram imageadas, conseguindo-se com sucesso o mapeamento do embasamento, que na área está a mais de 50 metros de profundidade. Correlações com o perfil litológico e de dados de ensaios SPT de um furo de sondagem localizado no centro do arranjo revelaram que as diferenças na determinação da profundidade das interfaces foram menores do que 10%. Desta forma, o método mostrou ser uma ferramenta prática e eficiente nas aplicações geotécnicas, principalmente em ix áreas urbanas onde o ruído é elevado, o que muitas vezes inviabiliza o uso da investigação sísmica convencional (refração ou reflexão). / The multichannel analysis of surface waves (MASW) method was employed in a case study on the controlled site in the Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG), University of São Paulo (USP), located on the campus Butantã, São Paulo, in the grounds of the sedimentary basin São Paulo. The study aimed to shallow geological investigation, in other words, mapping of sedimentary strata present and the sediment-basement contact. In addition, It is sought to, by testing with different acquisition parameters, to get a routine for the acquisition and processing of data from active sources (sledgehammer and drop weight) and passive (vehicle traffic) that can be suitable for testing in other areas of the city of São Paulo who have similar conditions of the study area. In the acquisition with active sources were registered data with many different offsets and passive acquisition has been applied to the Passive Roadside MASW technique with the conventional linear receiver array disposed near and parallel to the traffic lane. Were performed, pre-processing of the data, generation of images of dispersion, extraction of dispersion curves and inversion. The combination of images generated based on data acquired from various sources resulted in image with improved signal to noise ratio and consequently in the production of finest curves that have been inverted to generate the 1D shear-wave velocities profiles. In general, the velocity profiles obtained from the data were acquired with the use of a sledgehammer to the wave generation mapped shallowest geological interfaces, but the resulting profiles of the acquired data using a font type \"drop weight\" reached greater depths, sometimes sampling the basement. In the case of passive sources, the main contact interfaces were imaged, achieving successful mapping of the basement, which in this area is over 50 meters deep. Correlations with the lithological profile and SPT data from a borehole located in the center of the array revealed that the differences in the depth determination of the interfaces was less than 10%. Thus, the method showed to be an efficient and practical tool in geotechnical applications, especially in urban areas where the noise is high, which often prevents the use of conventional seismic survey (reflection or refraction).
3

Traitement de données géophysiques en réseaux denses en configuration sismique passive et active / Geophysical Processing with dense arrays in passive and active seismic configurations

Chmiel, Malgorzata 02 March 2017 (has links)
En géophysique, les réseaux denses améliorent la caractérisation spatiale et fréquentielle des différents types d’ondes dans le milieu. Bien entendu, l’acquisition en surface est sujette aux ondes de surface qui sont très fortes. Les ondes de surface ont un fort impact sur les données géophysiques acquises au niveau du sol. Elles peuvent être considérées comme du bruit et être sujettes à la suppression puisqu’elles cachent l’information de sous-surface. Cependant, elles peuvent être utiles pour l’imagerie de proche surface si elles sont convenablement récupérées.Dans tous les cas, leur caractérisation est cruciale en géophysique d’exploration active et passive. Dans la surveillance microsismique passive, le bruit de surface ambiant est composé d’ondes de surface. L’objectif principal de la surveillance passive est de minimiser l’impact des ondes de surface sur les données microsismiques. Le fort bruit de surface diminue la sensibilité etl’efficacité des méthodes de détection et de localisation. De plus, les méthodes actuelles de localisation et de détection nécessitent généralement la connaissance d’informations telles qu’un un modèle de vitesse ou un modèle d’événement. Dans la sismique active, de fortes ondes de surface sont générés par des sources actives. Les stratégies actuelles de traitement sont généralement basées sur une sélection manuelle des ondes de surface afin de choisir lesquelles garder. Il s’agit là d’une tâche complexe, coûteuse et sujette à interprétation. Cependant, cette tâche est nécessaire pour l’imagerie de proche-surface et de sous-surface. Les ondes de surface peuvent être particulièrement difficiles à récupérer dans des acquisitions clairsemées.Nous proposons d’appliquer les techniques d’interférométrie et de formation de voies (telles que le Matched Field Processing) dans le contexte des réseaux denses. Une densité de traces importante ouvre de nouvelles possibilités dans les traitements géophysiques, qu’ils soient actifs ou passifs. Nous montrons que le bruit ambiant peut être utilisé dans le traitement microsismique pour extraire des informations importantes sur les propriétés du milieu. De plus, nous développons une approche de débruitage qui permet de supprimer les sources de bruit à la surface et détecter les événements microsismiques. Nous proposons également une méthode automatique de détection et de localisation qui se base sur une quantité minimale d’information préalable qui permet de récupérer la distribution des hétérogénéités du réservoir, dans le voisinage du puits. En ce qui concerne la sismique active, nous proposons une approche interférométrique et automatique de caractérisation des ondes de surface. Nous récupérons les noyaux de sensibilité de phase des ondes de surface entre deux points quelconques de l’acquisition. Ces noyaux de sensibilité sont par conséquent utilisés pour obtenir les courbes de dispersion multimodales. Ces courbes de dispersion permettent la séparation des différents modes des ondes de surface, et fournissent l’information de proche surface suite à une simple inversion.Le réseau dense permet l’amélioration des méthodes présentées ci-dessus: elle permet des applications alternatives et innovantes dans le traitement du signal géophysique. / In geophysics, spatially dense arrays enhance the spatial and frequential characterization of the various waves propagating in the medium. Of course, surface array is subject to strong surface waves. Surface waves highly impact the processing of geophysical data acquired at ground level. They can be considered as noise and subject to suppression as they mask sub-surface information.However, they can be useful for near-surface imaging if they are well retrieved. In any case, their characterization is crucial in active and passive exploration geophysics. In passive microseismic monitoring, ambient surface noise consists of surface waves. The main goal of passive monitoring is to minimize the impact of surface waves on the actual microseismic data. The strong ambient surface noise lowers the sensitivity and the efficiency ofdetection and location methods. Moreover, current location and detection methods usually require strong a priori information (e.g., a velocity model or a template).Active sources generate strong surface waves. In active seismic, current processing strategies often consist in manually picking surface wave arrivals in order to use or remove them. This is often a complex, time consuming, and an ambiguous task. However, it is needed for near- and sub-surface imaging. Surface waves can be particularly difficult to retrieve in sparse arrays. We propose to apply the techniques of interferometry and beamforming (Matched Field Processing in particular) in the context of dense arrays. High trace density opens new possibilities in geophysical processing in both passive and active surveys. We show that the ambient noise can be explored in the case of microseismic monitoring to extract important information about the medium properties. Moreover, we develop a denoising approach to remove the noise sources at the surface and detect the microseismic event. Furthermore, we propose an automatic detection and location method with a minimum a priori information to retrieve the distribution of heterogeneities in the reservoir, in the well vicinity.In active survey, we propose an interferometric, automatic approach to characterize the surface waves. We retrieve phase-sensitivity kernels of surface waves between any two points of the acquisition. These kernels are consequently used to obtain multi-mode dispersion curves. These dispersion curves make it possible to separate different modes of surface waves and provide near-surface information if inverted.The above presented methodologies benefit from spatially dense arrays.Dense arrays of sources or receivers enable alternative, innovative applications in geophysical processing.

Page generated in 0.0413 seconds