• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs

Boyne, J. R., Jackson, B. R., Taylor, A., Macnab, S. A., Whitehouse, A. January 2010 (has links)
Kaposi's sarcoma-associated herpesvirus (KSHV) expresses numerous intronless mRNAs that are unable to access splicing-dependent cellular mRNA nuclear export pathways. To circumvent this problem, KSHV encodes the open reading frame 57 (ORF57) protein, which orchestrates the formation of an export-competent virus ribonucleoprotein particle comprising the nuclear export complex hTREX, but not the exon-junction complex (EJC). Interestingly, EJCs stimulate mRNA translation, which raises the intriguing question of how intronless KSHV transcripts are efficiently translated. Herein, we show that ORF57 associates with components of the 48S pre-initiation complex and co-sediments with the 40S ribosomal subunits. Strikingly, we observed a direct interaction between ORF57 and PYM, a cellular protein that enhances translation by recruiting the 48S pre-initiation complex to newly exported mRNAs, through an interaction with the EJC. Moreover, detailed biochemical analysis suggests that ORF57 recruits PYM to intronless KSHV mRNA and PYM then facilitates the association of ORF57 and the cellular translation machinery. We, therefore, propose a model whereby ORF57 interacts directly with PYM to enhance translation of intronless KSHV transcripts.
2

An interaction between KSHV ORF57 and UIF provides mRNA-adaptor redundancy in herpesvirus intronless mRNA export

Jackson, B.R., Boyne, James R., Noerenberg, M., Taylor, A., Hautbergue, G.M., Walsh, M.J., Wheat, R., Blackbourn, D.J., Wilson, S.A., Whitehouse, A. January 2011 (has links)
The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently export Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway. Similarly however, depletion of Aly only leads to a modest reduction in the nuclear export of KSHV intronless mRNAs. Herein, we identify a novel interaction between ORF57 and the cellular protein, UIF. We provide the first evidence that the ORF57-UIF interaction enables the recruitment of hTREX and TAP to KSHV intronless mRNAs in Aly-depleted cells. Strikingly, depletion of both Aly and UIF inhibits the formation of an ORF57-mediated nuclear export competent ribonucleoprotein particle and consequently prevents ORF57-mediated mRNA nuclear export and KSHV protein production. Importantly, these findings highlight that redundancy exists in the eukaryotic system for certain hTREX components involved in the mRNA nuclear export of intronless KSHV mRNAs.

Page generated in 0.1626 seconds