• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 71
  • 55
  • 23
  • 12
  • 7
  • 6
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 588
  • 165
  • 122
  • 101
  • 75
  • 72
  • 71
  • 62
  • 57
  • 49
  • 45
  • 44
  • 42
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Desenvolvimento de uma mesa angular rotativa para a usinagem de ultraprecisão / Development of a rotating tilt stage for the machining high precision

Carlos Umberto Burato 07 February 2003 (has links)
Este trabalho trata do desenvolvimento de uma mesa angular rotativa, para o microposicionamento de peças anesféricas durante a usinagem de ultraprecisão, para atender as tolerâncias nanométricas. Este microposicionamento angular é alcançado com o emprego de atuadores piezelétricos. Por se tratar de um tipo de sistema com movimento de rotação, relata-se o problema encontrado para energizar os atuadores. Este problema é abordado mostrando a alternativa encontrada destacando pontos relevantes, como: a) energização através de anéis coletores deslizantes, de cobre revestidos em prata, fixados no diâmetro externo do dispositivo; b)isolação elétrica entre os anéis e a peça; c) ligação do cabo coaxial vindo dos atuadores piezelétricos; d) aterramento dos cabos coaxiais, utilizando apenas um anel coletor deslizante. Explica como acontece a transmissão do sinal de corrente elétrica do aparelho de controle para os anéis deslizantes e posteriormente aos atuadores piezelétricos, utilizando contatos através de escovas, com 65% de prata e 35% de grafite, com molas duplas para garantir a pressão do contato, fixadas numa base rígida externa ao dispositivo. Destaca-se que a confiabilidade no microposicionamento da peça está na preservação da transmissão de uma corrente elétrica de 50mA para os atuadores. Conclui que é possível realizar o microposicionamento angular da peça que está sendo trabalhada, durante a usinagem de ultraprecisão, garantindo assim suas tolerâncias nanométricas / This work deals with a rotating tilt stage. It considers the micropositioning of aspheric workpieces during high precision machining, in order to obtain nanometric accuracies. It defines this angular micropositioning with the use of piezoelectric actuators. The problem found to energize the actuators, because it is a rotating driving mechanism is discussed. The chosen solution is presented and import points are highlighted, such as: a) to energize through sliding ring collectors, of copper coated in silver, fastened to the external diameter of the device; b) electric isolation between the rings and the workpiece; c) connection of the coax cable of the piezoelectric actuators; d) to ground the coax cables, just using a sliding ring collector. The transfer of electric current of the control system to the sliding rings and piezoelectric actuators is explained. Contacts with 65% of silver and 35% of carbon, with double springs to guarantee the pressure of the contact, fastened to a rigid base are used. The reliability in the micropositioning of a workpiece depends on the preservation of the electric current of 50mA to the actuators. It is shown that it is possible to realize the angular micropositioning of workpiece, during high precision machining, guaranteeing nanometric accuracies
222

Piezoelectric Acousto-Optical Modulation in Aluminum Nitride for Integrated RF-Photonics

Ghosh, Siddhartha 01 August 2015 (has links)
Over the past several years, rapid advances in the field of integrated photonics coupled with nanofabrication capabilities have enabled studies of the interaction of light with the mechanics of a variety of physical structures. Concurrently, mechanical resonators have been extensively studied in the MEMS community due to their high quality factors, and have been implemented in a variety of RF filters and oscillators. The combination of MEMS with integrated optomechanical structures can generate a variety of novel devices that can be used for applications in RF-Photonics, timing and optical switching. While there are several demonstrations of electrostatic devices integrated with optomechanical structures, fewer examples exist in the piezoelectric domain. In particular, photonic integration in a piezoelectric material can benefit from some of the traditional strengths associated with this type of actuation, such as the ability to easily scale to higher frequencies of operation by patterning lateral features, the ability to interface with 50Ω electronics and strong electromechanical coupling. In addition, it enables a platform to produce new architectures for photonic-based electronic frequency reference oscillators that incorporate multiple degrees of freedom. This thesis presents the development of a piezoelectrically-actuated acousto-optic modulator in the aluminum nitride (AlN) material system. The process of implementing this device is carried out in five principal stages. First, light coupling from optical fibers to the AlN thin film is demonstrated with the use of on-chip grating couplers, exhibiting a peak insertion loss of -6.6 dB and a high 1 dB bandwidth of 60 nm for operation in the telecommunications C- and L-bands. This is followed by characterization of photonic whispering gallery mode microdisk and microring resonators with optical quality factors on the order of 104. Next, a robust fabrication method combining optical and electron-beam lithography is developed to produce a fully-integrated device preserving the critical features for acoustic and photonic resonators to be colocalized in the same platform. Acousto-optic modulation is demonstrated with the use of a contour mode resonator which drives displacements in the photonic resonator at 653 MHz, corresponding to the mechanical resonance of the composite structure. The modulator is then implemented in an opto-acoustic oscillator loop, for which an initial phase noise of -72 dBc/Hz at 10 kHz offset from the carrier is recorded with a large contribution from thermal noise at the photodetector. Finally, some possibilities to improve the modulator efficiency and oscillator phase noise are provided along with prospects for future work in this area.
223

Development of dielectric barrier discharge plasma actuators and their application at subsonic speeds

Hale, Craig January 2012 (has links)
Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The aim of this project is to initially develop a system capable of generating and sustaining a plasma that generates a wall bounded jet. The next step is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Finally the best case design is applied at the leading edge and flap shoulder of a NACA0015 aerofoil with a 20% flap. Utilising a transformer cascade, plasma has been generated for a variety of input voltages. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry (PIV). Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design was investigated. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with shallow initial encapsulated electrodes induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric. The best actuator case is applied to the aerofoil for Reynolds numbers of 1:97x10⁵, 2:63x10⁵ and 3:29x10⁵. The lift and drag are recorded using pressure measurements around the aerofoil surface and across the aerofoil's wake. PIV is utilised to visualise the flow field. The trailing edge actuator produces a step increase in lift for pre-stall angles of attack and delays stall by 1° at Re = 1:97x10⁵. The leading edge actuator has limited impact on the flow for the no flap deflection case due to the actuator location. As the flap deflection increases the leading edge actuator is able to influence the flow. Repositioning of the leading edge actuator has the ability to reattach the flow around the fore portion of the aerofoil at a post stall angle of alpha = 18°.
224

Line of sight stabilization of an optical instrument using gained magnetostrictive actuators

Bester, Christiaan Rudolf 08 July 2005 (has links)
Line-of-sight stabilization of an optical instrument using magnetostnctlve actuators is described in this study. Various stabilization methods, i.e. gyroscopic, hydraulic, piezoelectric, electrodynamic and magnetostrictive methods, are compared and magnetostrictive stabilization is selected for its relatively large stroke length, low input voltage and wide frequency bandwidth. The system makes use of two magnetostrictive actuators, one at each end of the optical instrument, mounted between the moving base and instrument. Each actuator is equipped with cylindrical rods of Terfenol-D, a highly magnetostrictive material. Field coils are wound around the rods to produce a strain in the rods, thereby exciting angular motion of the instrument. Actuator stroke length is enhanced by means of a hingeless gain mechanism, rod prestressing and field biasing. Dynamic characteristics of the system are modelled to facilitate actuator, coil and control system design. A linear, single-degree-of-freedom actuator model, in state-space and transfer function forms, is derived and coupled to a distributed model of the optical instrument, using the Rayleigh-Ritz method. Transfer functions between actuator coil voltages and instrument angular acceleration are derived. Normal mode shapes, natural frequencies and damping factors are predicted. Design concepts for bias field, prestress, actuator gain and optical instrument support structure, are discussed and the most suitable concepts are selected. The required actuator gain, rod length and diameter, prestress spring stiffness, coil resistance and inductance are calculated. System components are designed in detail and safety of the design is checked. The actuators are characterized quasi-statically to determine the saturation strain, linear range of operation and DC bias field. The system is dynamically characterized to obtain transfer functions between the coil voltage and instrument angular acceleration. The test setups are described and limitations of the setups are discussed. Test results are processed and discussed. A comparison with the modelled results shows that the model is highly inaccurate. Reasons for inaccuracies are given and updating of the model is motivated. An updated model is obtained from the experimental results. The model is divided into electrical and mechanical subsystem models. The SDOF actuator models are replaced with 2DOF models (one for each actuator) and coupled to the instrument and base models, using substructure synthesis. The electrical and mechanical subsystem models are subsequently coupled. It is shown that the updated system model is considerably more accurate than the original model. A linear, suboptimal, disturbance feedforward plus output feedback controller, with output integral feedback, is designed, implemented and tested. An H2 optimal controller is designed and modified to improve robustness. The controller model is coupled to that of a suboptimal observer. An output integral feedback loop is added to further improve robustness. The controller is implemented in digital filter form. The test apparatus and procedure are described. Test results are processed and discussed. It is shown that the LOS stabilization system achieves 80% of the required isolation, over a frequency bandwidth of 0 Hz to 100 Hz. A summary of the work done, conclusions that can be drawn from the results, problems encountered and recommendations for future work, are given. / Thesis (PhD (Mechanical Engineering))--University of Pretoria, 2006. / Mechanical and Aeronautical Engineering / unrestricted
225

Centrální řidící systém inteligentního domu / Central control system of the smart house

Novotný, Jan January 2012 (has links)
The work deals with building controlling system. It can be divided into three parts. First part describe general theory of smart houses. Second part analysing the task. Last part is realization about.
226

Centrální řidicí systém inteligentního domu / Central control system of the smart house

Novotný, Jan January 2013 (has links)
The work deals with building controlling system. It can be divided into three parts. First part describe general theory of smart houses. Second part analysing the task. Last part is realization about.
227

Návrh a realizace laboratorní úlohy řízení elektro-pneumatického manipulátoru FESTO / Realization of control system for electro-pneumatic manipulator FESTO

Jurníček, Jakub January 2013 (has links)
Presented thesis deals with pneumatic actuators, PLC control systems and physical properties of compressed air. The thesis introducing short view of pneumatic components of FESTO manipulator and LabVIEW programming. Experimental results are presented on three axis FESTO manipultor programmed by NI LabVIEW.
228

Geometrically Enabled Polypyrrole Composites

Yan, Bingxi 11 July 2019 (has links)
No description available.
229

Understanding Flow Physics and Control in an Aggressively Offset High-Speed Inlet/Diffuser Model

O'Neill, Collin James 06 October 2020 (has links)
No description available.
230

Active, Regenerative Control of Civil Structures

Scruggs, Jeffrey 04 August 1999 (has links)
An analysis is presented on the use of a proof-mass actuator as a regenerative force actuator for the mitigation of earthquake disturbances in civil structures. A proof-mass actuator is a machine which accelerates a mass along a linear path. Such actuators can facilitate two-way power flow. In regenerative force actuation, a bi- directional power-electronic drive is used to facilitate power flow both to and from the proof-mass actuator power supply. With proper control system design, this makes it possible to suppress a disturbance on a structure using mostly energy extracted from the disturbance itself, rather than from an external power source. In this study, three main objectives are accomplished. First, a new performance measure, called the "required energy capacity," is proposed as an assessment of the minimum size of the electric power supply necessary to facilitate the power flow required of the closed-loop system for a given disturbance. The relationship between the required energy capacity and the linear control system design, which is based on positive position feedback concepts, is developed. The dependency of the required energy capacity on hybrid realizations of the control law are discussed, and hybrid designs are found which minimize this quantity for specific disturbance characteristics. As the second objective, system identification and robust estimation methods are used to develop a stochastic approach to the performance assessment of structural control systems, which evaluates the average worst-case performance for all earthquakes "similar" to an actual data record. This technique is used to evaluate the required energy capacity for a control system design. In the third objective, a way is found to design a battery capacity which takes into account the velocity rating of the proof-mass actuator. Upon sizing this battery, two nonlinear controllers are proposed which automatically regulate the power flow in the closed-loop system to accommodate a power supply with a finite energy capacity, regardless of the disturbance size. Both controllers are based on a linear control system design. One includes a nonlinearity which limits power flow out of the battery supply. The other includes a nonlinearity which limits the magnitude of the proof-mass velocity. The latter of these is shown to yield superior performance. / Master of Science

Page generated in 0.3103 seconds