Spelling suggestions: "subject:"cyclic diaminocarbene"" "subject:"cyclic aminocarbene""
1 |
Novel diaminocarbene ligands and their applications in ruthenium-based metathesis catalystsRosen, Evelyn Louise 02 December 2010 (has links)
With the ever expanding utility of transition metal catalysis, there has been a thrust both to develop catalysts with unique selectivites or activites, and to understand the factors which govern these characteristics at both a fundamental and practical level. Olefin metathesis has become an essential reaction for the synthesis of small molecules in addition to polymeric materials. We have pursued two distinct ligand classes based on diaminocarbenes with novel architectures to address specific limitations within this useful class of reactions: 1) limited access to polymeric materials with controlled microstructures and 2) poor stereoselectivity in Ru-catalyzed cross-metathesis (CM) reactions. Numerous phosphines and N-heterocyclic carbenes (NHCs) have been used as ligands for Ru metathesis catalysts, and the resulting activity is very sensitive to their steric and electronic nature. We envisioned that we could take advantage of this dependence by developing a catalyst with tunable ligand donicity. Redox-switchable ligands can lead to catalysts whose selectivity and/or activity are dependent upon the ligand oxidation state. Towards this purpose, we have developed a ligand which incorporates a 1,1’-disubstituted ferrocene moiety into the backbone of a diaminocarbene (FcDAC). Upon ligation of FcDAC to various transition metals, we were able to use cyclic voltammetry and a spectroelectrochemical FT-IR experiment to show electronic communication between FcDAC and the coordinated metal. We then pursued Ru metathesis catalysts incorporating these ligands. The ring-opening metathesis polymerization of 1,5-cyclooctadiene was studied using [(FcDAC)(PPh₃)Cl₂Ru=(3-phenylindenylid-2-ene)] as the catalyst. Chemical redox reactions were used to establish the ability of FcDAC to impart redox-tunable properties to Ru metathesis catalysts. A new ligand class pioneered in our group, N-aryl,N-alkyl acyclic diaminocarbenes (ADCs), was also studied in various Ru metathesis catalysts. To our delight, these catalysts showed lower E : Z ratios than analogous NHC ligands in two representative CM reactions. We also investigated the conformational diversity of these differentially substituted ADCs given their ability to rotate about their C–N bonds, in particular, to determine how this might influence their donicity. Complexes of the type [(ADC)Ir(COD)Cl] and [(ADC)Ir(CO)₂Cl] were studied, given the wealth of structural and spectral data available for analogous compounds incorporating related ligand classes. Different conformations resulted depending on the N-substituents and the nature of the metal complex. Interestingly, the electron donating ability of ADC ligands was found to depend on their conformation, as evidenced by FT-IR and cyclic voltammetry. This established a new avenue for tuning the donor properties of differentially substituted ADC ligands. The unique properties of these novel ligand classes were demonstrated in Ru metathesis catalysts. However, on a broader level, these ligands are expected to have utility in diverse catalytic applications. / text
|
2 |
Ligand Effects in Gold(I) Acyclic Diaminocarbene Complexes and Their Influence on Regio- and Enantioselectivity of Homogeneous Gold(I) CatalysisEllison, Matthew Christopher 08 1900 (has links)
This dissertation focuses on the computational investigation of gold(I) acyclic diaminocarbene (ADC) complexes and their application in homogeneous gold(I) catalysis. Chapter 2 is an in-depth computational investigation of the σ- and π-bonding interactions that make up the gold-carbene bond. Due to the inherent conformation flexibility of ADC ligands, distortions of the carbene plane can arise that disrupt orbital overlap between the lone pairs on the adjacent nitrogen atoms and the empty p-orbital of the carbene. This study investigated the affect these distortions have on the strength of the σ- and π-bonding interactions. This investigation demonstrated that while these distortions can affect the σ- and π-bonding interactions, the ADC ligand have to become highly distorted before any significant change in energy of either the σ- or π-bonding interactions occurs. Chapter 3 is a collaborative investigation between experimental and computational methods, DFT calculations were employed to support the experimental catalytic results and determine the role that steric effects have in controlling the regioselectivity of a long-standing electronically controlled gold(I)-catalyzed tandem 1,6-enyne cyclization/hydroarylation reaction with indole. This study demonstrated that by sterically hindering nucleophilic attack of indole at the favored position, nucleophilic attack would occur at a secondary position leading to the selective formation of the electronically unfavored product. Chapter 4 is a collaborative investigation between experimental and computational methods. DFT calculations were employed to investigate and rationalize the importance of secondary non-covalent interactions and their influence on the enantioselectivity of a gold(I)-catalyzed intramolecular hydroamination of allene reaction. Through computational investigation of the enantiodetermining step, and the non-covalent interactions present between 2′-aryl substituent and the rest of the catalyst, it was determined that the presence of CF3 group on the 3,5-position of the 2′-aryl ring is crucial to maintaining a more rigid chiral pocket leading to higher enantiomeric excesses in this dynamic system. This increased rigidity is believed to be attributable to the several weak non-covalent interactions that arise between the allene substrate or diisopropyl N-substituent and the fluorine atoms of the CF3 groups.
|
3 |
Synthesis and Application of New Chiral Ligands for Enantioselectivity Tuning in Transition Metal CatalysisKong, Fanji 08 1900 (has links)
A set of five new C3-symmetric phosphites were synthesized and tested in palladium-catalyzed asymmetric Suzuki coupling. The observed reactivity and selectivity were dependent upon several factors. One of the phosphites was able to achieve some of the highest levels of enantioselectivity in asymmetric Suzuki couplings with specific substrates. Different hypotheses have been made for understanding the ligand effects and reaction selectivities, and those hypotheses were tested via various methods including DOSY NMR experiments, X-ray crystallography, and correlation of catalyst selectivity with Tolman cone angles. Although only modest enantioselectivities were observed in most reactions, the ability to synthesis these phosphites in only three steps on gram scales and to readily tune their properties by simple modification of the binaphthyl 2´-substituents makes them promising candidates for determining structure-selectivity relationships in asymmetric transition metal catalysis, in which phosphites have been previously shown to be successful. A series of novel chiral oxazoline-based carbodicarbene ligands was targeted for synthesis. Unfortunately, the chosen synthetic route could not be completed due to unwanted reactivity of the oxazoline ring. However, a new and efficient route for Pd-catalyzed direct amination of aryl halides with oxazoline amine was developed and optimized during these studies. Chiral binaphthyl based Pd(II) ADC complexes with different substituent groups have been synthesized and tested in asymmetric Suzuki coupling reactions. Although only low enantioselectivities were observed in Suzuki coupling, this represents a new class of chiral metal-ADC catalysts that could be tested in further catalytic.
|
Page generated in 0.0775 seconds