Spelling suggestions: "subject:"cyclic nucleoside bisphosphonates"" "subject:"5cyclic nucleoside bisphosphonates""
1 |
Syntéza nového typu acyklických nukleosid fosfonátů a příprava proléčiv a systémů doručení léčiva / Synthesis of novel types of acyclic nucleoside phosphonates and preparation of prodrugs and drug delivery systemsKalčic, Filip January 2021 (has links)
First part of this thesis was focused on the previously overlooked field of C1'-branched acyclic nucleoside phosphonates (ANPs). Five diverse synthetic approaches were developed/optimized affording key 6-chloropurine intermediates bearing N9 -phosphonomethoxyethyl (PME) branched at C1' position in 2-4 steps. It was demonstrated that these intermediates can be further vastly diversified into ANPs bearing both natural and unnatural nucleobases. Single enantiomers as well as racemates of final C1'-branched ANPs (overall 48 final compounds) were prepared and selected compounds were evaluated with respect to their biological properties. The aforementioned ANPs showed no antiviral potency against studied viruses and only weak to moderate cytostatic activity. Adenine C1'-branched ANPs proved to be the most potent currently known inhibitors of Trypanosoma brucei adenine phosphoribosyl transferase (TbrAPRT), an enzyme involved in purine salvage pathway (PSP) of T. brucei. Further biological evaluation of prepared compounds is in progress. Second part of this thesis was focused on development of novel prodrug moieties with higher selectivity index (i.e. toxicity/potency ratio - SI) based on so-called ProTide prodrugs where phenol (present in ProTides) was replaced by tyrosine derivatives. Tenofovir was...
|
2 |
Acyklické nukleosidy 3-hydroxypyrazin-2-karboxamidových bází / Acyclic nucleosides of 3-hydroxypyrazine-2-carboxamide basesChaloupecká, Ema January 2019 (has links)
This thesis deals with the preparation of acyclic nucleosides and nucleoside phosphonates of compounds T-705 (6-fluoro-3-hydroxypyrazine-2-carboxamide) and T-1105 (3-hydroxypyrazine-2-carboxamide). Acyclic nucleoside phosphonates are substances that can terminate viral RNA or DNA replication, and some of them are used in the treatment of viral diseases. T-705 and T-1105 have shown activity against the influenza virus, and T-705 has already been approved for its treatment in Japan. Since both compounds mimic natural nucleobases in the body, their acyclic nucleosides and nucleoside phosphonates also have the potential to be biologically active. Methods for the synthesis of 3-fluoro-2-(phosphonomethoxy)propyl and 3-hydroxy-2-(phosphonomethoxy)propyl derivatives of T-705 and T-1105, their prodrugs containing lipophilic groups for the improvement of the pharmacokinetic properties and also their phosphonate diphosphates, suitable for the biological activity measurements, have been proposed. Some of these derivatives were subsequently prepared. Key words: acyclic nucleosides, acyclic nucleoside phosphonates, T-705, T-1105, favipiravir, antiviral activity, influenza
|
3 |
Vliv acyklických nukleosidfosfonátů PMEG a PMEDAP na p38 kinasovou signalizaci v lidských leukemických buňkách / The influence of acyclic nucleotide phosphonates PMEG and PMEDAP on p38 kinase signaling in human leukemic cellsNejedlá, Michaela January 2010 (has links)
PMEG [9-(2-phosphonomethoxyethyl)guanine] and PMEDAP [9-phosphonomethoxy- ethyl)-2,6-diaminopurine] are acyclic nucleoside phosphonates possessing cytotoxic properties. Antiproliferative effect of PMEG was demonstrated in various tumor cell lines in vitro. PMEG also represents an active component of some experimental prodrugs with enhanced selectivity and efficacy (such as GS-9219). PMEDAP seems to have weaker effect in vitro compared to PMEG, however it exhibited pronounced antitumor effect in SD-rats with spontaneous lymphoma. Therefore it was included in the present study as well. The aim of this study was to describe the interactions of PMEG and PMEDAP with p38 MAP kinase signaling and its relationship to the apoptosis. We investigated the influence of these compounds on the expression of four genes encoding p38 MAPK isoforms and whether this change is translated into the protein. It was found that PMEG up-regulates p38β and γ mRNA in CCRF-CEM cells and p38 β and δ in HL-60 cells. The effect of PMEDAP was less pronounced than that of PMEG. However, total p38 protein level remained unaffected by PMEG and PMEDAP. Activation of p38 MAPK cascade was also measured in the cells exposed to these agents using phospho-specific antibodies. We found that neither PMEG nor PMEDAP activated p38 kinase...
|
4 |
Nouveaux anti-viraux pour le traitement des affections associées aux virus émergents / New antiviral for the treatment of the infections associated with the emergent virusesKasthuri, Mahesh 09 December 2011 (has links)
Dans un premier chapitre, nous avons présenté un historique succinct de la chimiothérapie antivirale et l'utilisation d'analogues nucléos(t)idiques. Nous nous sommes focalisés en particulier sur les nucléosides phosphonates acycliques (ANP) en tant qu'antiviraux potentiels. Dans un second chapitre, nous avons décrit la synthèse de β-céto, β-hydroxylamino et β-O-(benzyl)hydroxylamino ANP dérivés de l'adénine et de la cytosine. Les isomèrs (R) et (S)-β-hydroxy-ANP ont été préparés par dédoublement du racémique correspondant avec le (S)-MPA et l'attribution des configurations absolues a été effectuée par RMN et calculs de modélisation moléculaire. Nous avons aussi développé une méthodologie de synthèse de β-azido-ANP, ces derniers étant utilisés pour la préparation de β-amino-ANP par hydrogénation catalytique. Dans un troisième chapitre, nous avons présenté la synthèse des 2H-azirine et cis-aziridne-ANP et examiné lʹ ouverture de cycle comme voie d'accès à des ANP α,β-fonctionnalisés. Les propriétés biologiques de ces nouveaux ANP ont été évaluées en culture cellulaire sur un certain nombre de virus à ADN et ARN. / In the first chapter, we presented a brief history of antiviral chemotherapy and use of nucleos(t)ide analogues, especially acyclic nucleoside phosphonates as potential antiviral agents. In the chapter-II we have successfully synthesized ¦Â-keto, ¦Â-hydroxylamino and ¦Â-O-(benzyl)hydroxylamino ANPs of adenine and cytosine derivatives. Then (R) and (S)-¦Â-hydroxy-ANPs were prepared via chiral resolution of racemic ¦Â-hydroxy-ANPs with (S)-MPA and assignment of absolute configuration was achieved using NMR and molecular modeling studies. We also developed a methodology for the synthesis of ¦Â-azido-ANPs and those were used for the preparation of ¦Â-amino-ANPs by catalytic hydrogenation. In third chapter, we synthesized 2H-azirine and cis-aziridine-ANPs and explored their ring opening to functionalized ¦Á,¦Â-ANPs. The novel ANPs obtained during this study were evaluated for their inhibitory effect on a number of DNA and RNA viruses in cell culture experiments.
|
Page generated in 0.0606 seconds