1 |
Efficacy of approved Smallpox Vaccines in Human and Canine Cancer Therapy: Adipose - tissue derived Stem Cells (ADSC) take up VACV and serve as a protective vehicle for virus delivery to tumors / Wirksamkeit zugelassener Pockenimpfstoffe in der Krebstherapie bei Menschen und Hunden: Aus Gewebe gewonnene Stammzellen (ADSC) nehmen VACV auf und dienen als schützendes Vehikel für den Viruseintrag in TumoreVyalkova, Anna January 2022 (has links) (PDF)
Cancer is one of the major causes of mortality in developed countries. In 2020, there were more than 19.3 million new cases of tumor malignancies worldwide, with more than 10 million deaths. The high rates of cancer cases and mortality necessitate extensive research and the development of novel cancer treatments and antitumor agents. In most cases, conventional treatment strategies for tumor therapy are based on chemotherapeutic treatment, which is supplemented with radiotherapy and/or surgical resection of solid tumors [1]. The use of chemotherapy for the treatment of cancer has significant side effects, the most dangerous of which is toxicity [2] [3].
Modern methods of treating tumors focus on specific drug delivery to the tumor site, actively targeting the tumor cells, as well as the reduction of side effects. One of the most promising current approaches is based on oncolytic viruses. Antitumor properties of viruses were documented at the beginning of the 20th century when some cancer patients recovered after acute viral infections, particularly influenza [4]. Vaccinia virus (VACV) is a member of the Poxviridae family, has natural antitumor properties, and provides a good basis for generating efficient recombinant oncolytic strains. Furthermore, VACV has never been shown to integrate into the host genome [5]. VACV is likely one of the safest and well-studied viruses due to extensive research being done in molecular biology and pathophysiology to investigate its potential as a vaccine for smallpox eradication programs. It has been administered to over 200 million people worldwide. VACV antitumor therapeutic effectiveness has been established in xenograft models with a variety of tumor types for human and canine cancers. Furthermore, recombinant oncolytic VACVs expressing genes encoding light-emitting proteins are a big improvement in a treatment strategy that combines tumor-specific therapies and diagnostics.
Oncolytic virus treatments are effective in xenograft cancer models in mice, however, the significant improvements found in mice do not always translate to human cancer patients. These therapies should be tested in dogs with spontaneous cancer not only to offer well translatable information regarding the possible efficiency of viral therapy for human cancers but also to improve the health of our household pets as well. Spontaneous canine tumors are starting to be regarded as an essential model of human cancers that can reproduce the tumor microenvironment and immune response of cancer patients [6]. Just as data obtained in dog experiments can improve cancer therapy for human patients, these findings can also be used to improve treatment protocols in canine patients.
Hundreds of studies and dozens of reviews have been published regarding the antitumor effects of various recombinants of VACV, but information on the anticancer features of initial, genetically-unmodified “naïve” VACV is still limited. In the first studies, we compared different wild-type, non-modified strains of VACV and tested their oncolytic properties on a panel of various cancer cells derived from different organs. In addition, we also tested a protection system based on the “Trojan horse” concept - using a combination of human Adipose tissue-derived Stem Cells (hADSC) and three different wild-type single plaque purified Vaccinia virus strains: W1, L1, and T1. We showed that all tested human cell lines (FaDu, MDA MB 231, HNT-13, HNT-35, and PC-3) are permissive to L0, W0, T0, L1, W1, and L1 infection. Furthermore, we tested the cytotoxicity of VACV in different cancer cell lines (A549, PC-3, MDA-MB 231, FaDu, HNT-13, HNT-25, and HNT-35). All strains lysed the cells, which was most visible at 96 hpi. We also showed that all tested strains could efficiently infect and multiply in hADSC at a high level. In our in vivo study, we tested the therapeutic efficacy of the wild-type Vaccinia viruses L1, W1, and T1 alone or in combination with hADSC. Wild-type VACV strains were tested for their oncolytic efficiency in human lung adenocarcinoma (A549) in a xenograft model. Treatment of A549 tumors with different doses of L1 and W1 as well as with a L1/ADSC or W1/ADSC combination led to significant tumor regression compared to the PBS control. Additionally, the treatment with L1 and W1 and the combination of L1/ADSC and W1/ADSC was well tolerated by the animals. In the case of the wild-type Tian Tan strain, results were not obtained due to the high cytotoxicity of this strain. Therefore, it should be attenuated for further studies.
In the second part of the current study, we investigated the oncolytic effect of C1-opt1, W1 opt1, and L3-opt1 strains based on the wild-type Copenhagen, Wyeth, and Lister vaccines with additional expression of turboFP635. Replication and cytotoxicity assays demonstrated that all 3 viruses were able to infect, replicate in and kill canine tumor cell lines STSA-1 and CT1258 in a virus dose- and time- dependent fashion. Cytotoxicity and replication assays were also performed on cultured canine Adipose-derived Mesenchymal Stem Cells (cAdMSC). The results showed that the cells were lysed much slower than the tumor cells. It suggests that these cells can harbour the virus for a long-term period, allowing the virus to spread into the body and there is enough time to reach the primary tumor or metastases before the cell carrier is destroyed. The viral replication in cAdMSC in our study was lower than in canine cancer cells (STSA-1 and CT1258) at the same MOI. After being studied in cell culture, C1 opt1 and their combination with cAdMSC (C1-opt1/cAdMSC) were used in canine STSA 1 tumor bearing nude mice. We tested the oncolytic effect of the C1-opt1 virus alone and in combination with cAdMSC in the canine STSA-1 xenograft mouse model. Altogether, our findings have shown that both C1-opt1 and cAdMSC/C1-opt1 significantly reduced tumor size or eliminated the tumor. There was no significant difference between C1-opt1 alone and cAdMSC/C1-opt1. The virus particles were mostly found within the tumor after 24 dpi, some amount of virus particles were found in the lungs of mice injected with a combination of cAdMSC/C1-opt1 but not in the group injected with virus alone (cAdMSC might get stuck in the lungs and cause virus propagation there).
Taken together, this study provided a proof-of-concept that hADSC/cAdMSC can be used as a carrier system for the “Trojan horse” concept. However, it should be confirmed in another experimental model system, such as canine patients. Moreover, these findings suggest that wild-type, non-modified strains of Vaccinia virus isolates can be considered promising candidates for oncolytic virotherapy, especially in combination with mesenchymal stem cells. / Krebs wird zu einer der Hauptursachen für die Sterblichkeit in den Industrieländern. Im Jahr 2020 gab es weltweit mehr als 193 Millionen neue Fälle von tumormalen Erkrankungen mit mehr als 10 Millionen Todesfällen. Folglich erfordern die hohen Krebsfälle- und Mortalitätsraten umfangreiche Forschung und Entwicklung neuartiger Krebsbehandlungen und Antitumormittel. Konventionelle Behandlungsstrategien zur Tumortherapie basieren in den meisten Fällen auf einer chemotherapeutischen Behandlung, die durch Strahlentherapie und/oder chirurgische Resektion solider Tumoren ergänzt wird [1]. Die Verwendung von Chemotherapie zur Behandlung von Krebs hat erhebliche Nebenwirkungen, insbesondere die gefährlichste Intoxikation [2] [3]. ...
|
Page generated in 0.0178 seconds