• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 10
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimental and analytical evaluation of multi-user beamforming in wireless LANs

January 2012 (has links)
Adaptive beamforming is a. powerful approach to receive or transmit signals of interest in a spatially selective way in the presence of interference and noise. Recently, there has been renewed interest in adaptive beamforming driven by applications in wireless communications, where multiple-input multiple-output (MEMO) techniques have emerged as one of the key technologies to accommodate the high number of users as well as the increasing demand for new high data rate services. Beamforming techniques promise to increase the spectral efficiency of next generation wireless systems and are currently being incorporated in future industry standards. Although a significant amount of research has focused on theoretical capacity analysis, little is known about the performance of such systems in practice. In thesis, I experimentally and analytically evaluate the performance of adaptive beamforming techniques on the downlink channel of a wireless LAN. To this end. I present the design and implementation of the first multi-user beam-forming system and experimental framework for wireless LANs. Next, I evaluate the benefits of such system in two applications. First, I investigate the potential of beamforming to increase the unicast throughput through spatial multiplexing. Using extensive measurements in an indoor environment, I evaluate the impact of user separation distance, user selection, and user population size on the multiplexing gains of multi-user beamforming. I also evaluate the impact of outdated channel information due to mobility and environmental variation on the multiplexing gains of multi-user beamforming. Further, I investigate the potential of beamforming to eliminate interference at unwanted locations and thus increase spatial reuse. Second, I investigate the potential of adaptive beamforming for efficient wireless multicasting. I address the joint problem of adaptive beamformer design at the PHY layer and client scheduling at the MAC layer by proposing efficient algorithms that are amenable to practical implementation. Next, I present the implementation of the beamforming based multicast system on the WARP platform and compare its performance against that of omni-directional and switched beamforming based multicast. Finally, I evaluate the performance of multicast beamforming under client mobility and infrequent channel feedback, and propose solutions that increase its robustness to channel dynamics.
12

OFDM Systems Based on Frequency Domain Adaptive Beamforming Algorithm

Hu, Jiun-Li 04 July 2003 (has links)
In this thesis, we investigate the use of adaptive antenna algorithms for OFDM systems to suppress interference in various channel conditions including narrowband and wideband interference, flat and frequency selective fading. We propose a novel frequency-domain beamformer, based on the linearly constrained modified constant modulus hybrid LMS (LCMCM-HLMS) algorithm for OFDM systems to improve the performance of interference suppression in AWGN channel with narrowband interference, Rayleigh fast fading channel with phase distortion, and the multipath environment. To verify the merits of the frequency-domain beamformer, the effect due to narrowband interference and random phase distortion are investigated. Moreover, to improve the performance of adaptive beamforming algorithm, the frequency-domain linearly constrained modified constant modulus hybrid LMS (LCMCM-HLMS) algorithm is proposed. Computer simulation results show that the proposed frequency-domain LCMCM-HLMS beamformer has good capability of interference supression in various environment, and can mitigate the phase distortion of channel. However, in the time-domain beamformer based on LMS [33], RLS ,LC-LMS and LC-FLS algorithm for OFDM systems, the performance may severely degraded under some situations. We will show that in terms of output SINR, beampatern, received signal constellation and mean square error (MSE), for narrowband interference suppression in AWGN channel, phase distortion in Rayleigh fast fading channel and the multipath environment.
13

Conception de systèmes de communication sans fils avec connaissance imparfaite du canal / Design of wireless communication system with imperfect channel state information

Xiao, Lei 28 September 2012 (has links)
Dans la première partie de la thèse, on se concentre sur la conception d'un système de communication par satellite complet se basant sur la construction de faisceaux adaptatifs aux terminaux mobiles. Comparé à la construction classique de faisceaux fixes, le système à faisceaux adaptatifs peut considérablement améliorer la capacité du système en termes du nombre de STs desservies et de l'efficacité énergétique. Pour la conception du système à faisceaux adaptatifs, les informations sur l'état de canal (CSI) sont essentielles. Vu que le temps de propagation est trop long par rapport au temps de cohérence du canal, le CSI instantané est déjà périmé lorsqu'il est reçu pour la construction des faisceaux. Cependant, une partie de l'information du canal, plus particulièrement, les vecteurs de directivité ont une variation assez lente. On utilise cette connaissance partielle du CSI pour concevoir le système à base de faisceaux adaptatifs. Afin d'estimer les vecteurs de directivité, on propose un algorithme basé sur un critère de minimisation de l'erreur quadratique. Puis, basées sur l'estimation des vecteurs de directivité, on présente deux approches heuristiques pour la conception des faisceaux. En outre, on propose également deux approches qui reposent sur l'estimation de la directivité pour la détection des STs et la résolution possible des collisions sur le canal d'accès aléatoire au satellite. Comme la performance du système SDMA dépend fortement des positions spatiales des STs co-existants, on propose deux algorithmes de faible complexité pour l'attribution des fréquences dans le système de communication par satellite / In the first part of the thesis, we focus on the design of a complete satellite communication system adopting adaptive beamforming with mobile satellite terminals. Compared with conventional fixed beamforming, adaptive beamforming can signi_cantly improve the capacity of a satellite system in terms of served satellite terminals (ST) and power e_ciency. For the design of an adaptive beamforming system, channel state information (CSI) is critical. Since the propagation delay is too long compared to the coherence time of the channel, the instantaneous CSI is already stale when processed for beamforming. However, some parts of the channel, more speci_cally, directivity vectors change quite slowly. We utilize this partial knowledge of CSI to design an adaptive beamforming system. In order to estimate the directivity vectors, we propose an algorithm based on a least square error criterion. Then, based on the estimation of directivity vectors, we propose two heuristics approaches to the design of adaptive beamforming. Additionally, we also propose two approaches, based on directivity estimation for the detection of transmitting terminals and the possible resolution of collisions in the random access channel of the satellite system. Since SDMA system performance depends strongly on the spatial locations of co-existing terminals, we also propose two low complexity algorithms for frequency allocation in a satellite communication system. Finally, we simulate a complete satellite system, including a random access channel and a connection-oriented channel. We analyze the system performance and compare it to conventional fixed beamforming systems
14

Analog Adaptive Calibration for Arbitrary Phased Array Configuration

Nielson, Mark William 01 March 2019 (has links)
The development of phased array antenna systems requires considerable resources and time. Due to this constraint, the Naval Air Command (NAVAIR) needs a phased array that can be physically reconfigured to meet the demands of multiple missions without added development time or cost. This work develops and demonstrates a solution to this problem by implementing an adaptive calibration approach to the development of electronically steerable antennas (ESAs). In contrast to previous analog adaptive beamformer systems, this system allows for an arbitrary antenna configuration with a variable number of antenna elements and locations. A simulation model of arbitrary phased array configurations was developed to test the beamformer calibration algorithm and was used to show practical tile locations. To demonstrate this approach, four 4x4 ULA phased array antenna tiles were built and tested together in various configurations to show the viability of developing a physically reconfigurable phased array system.
15

Robust adaptive beamforming for clutter rejection on atmospheric radars / 大気レーダーのための適応的クラッター抑圧手法

Hashimoto, Taishi 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20034号 / 情博第629号 / 新制||情||109(附属図書館) / 33130 / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 佐藤 亨, 教授 守倉 正博, 教授 山本 衛 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
16

Ultrasonic Arrays for Sensing and Beamforming of Lamb Waves

Engholm, Marcus January 2010 (has links)
Non-destructive testing (NDT) techniques are critical to ensure integrity and safety of engineered structures. Structural health monitoring (SHM) is considered as the next step in the field enabling continuous monitoring of structures. The first part of the thesis concerns NDT and SHM using guided waves in plates, or Lamb waves, to perform imaging of plate structures. The imaging is performed using a fixed active array setup covering a larger area of a plate. Current methods are based on conventional beamforming techniques that do not efficiently exploit the available data from the small arrays used for the purpose. In this thesis an adaptive signal processing approach based on the minimum variance distortionless response (MVDR) method is proposed to mitigate issues related to guided waves, such as dispersion and the presence of multiple propagating modes. Other benefits of the method include a significant increase in resolution. Simulation and experimental results show that the method outperforms current standard processing techniques. The second part of the thesis addresses transducer design issues for resonant ultrasound inspections. Resonant ultrasound methods utilize the shape and frequency of the object's natural modes of vibration to detect anomalies. The method considered in the thesis uses transducers that are acoustically coupled to the inspected structures. Changes in the transducer's electrical impedance are used to detect defects. The sensitivity that can be expected from such a setup is shown to highly depend on the transducer resonance frequency, as well as the working frequency of the instrument. Through simulations and a theoretical argumentation, optimal conditions to achieve high sensitivity are given.
17

Development of an Experimental Phased-Array Feed System and Algorithms for Radio Astronomy

Landon, Jonathan Charles 11 July 2011 (has links) (PDF)
Phased array feeds (PAFs) are a promising new technology for astronomical radio telescopes. While PAFs have been used in other fields, the demanding sensitivity and calibration requirements in astronomy present unique new challenges. This dissertation presents some of the first astronomical PAF results demonstrating the lowest noise temperature and highest sensitivity at the time (66 Kelvin and 3.3 m^2/K, respectively), obtained using a narrowband (425 kHz bandwidth) prototype array of 19 linear co-polarized L-band dipoles mounted at the focus of the Green Bank 20 Meter Telescope at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. Results include spectral line detection of hydroxyl (OH) sources W49N and W3OH, and some of the first radio camera images made using a PAF, including an image of the Cygnus X region. A novel array Y-factor technique for measuring the isotropic noise response of the array is shown along with experimental measurements for this PAF. Statistically optimal beamformers (Maximum SNR and MVDR) are used throughout the work. Radio-frequency interference (RFI) mitigation is demonstrated experimentally using spatial cancelation with the PAF. Improved RFI mitigation is achieved in the challenging cases of low interference-to-noise ratio (INR) and moving interference by combining subspace projection (SP) beamforming with a polynomial model to track a rank 1 subspace. Limiting factors in SP are investigated including sample estimation error, subspace smearing, noise bias, and spectral scooping; each of these factors is overcome with the polynomial model and prewhitening. Numerical optimization leads to the polynomial subspace projection (PSP) method, and least-squares fitting to the series of dominant eigenvectors over a series of short term integrations (STIs) leads to the eigenvector polynomial subspace projection (EPSP) method. Expressions for the gradient, Hessian, and Jacobian are given for use in numerical optimization. Results are given for simulated and experimental data, demonstrating deeper beampattern nulls by 6 to 30dB. To increase the system bandwidth toward the hundreds of MHz bandwidth required by astronomers for a fully science-ready instrument, an FPGA digital backend is introduced using a 64-input analog-to-digital converter running at 50 Msamp/sec and the ROACH processing board developed at the University of California, Berkeley. International efforts to develop digital back ends for large antenna arrays are considered, and a road map is proposed for development of a hardware correlator/beamformer at BYU using three ROACH boards communicating over 10 gigabit Ethernet.
18

Direction Finding and Beamforming Techniques using Antenna Array for Wireless System Applications

Al-Sadoon, Mohammed A.G. January 2019 (has links)
This thesis is concentrated on the Angle / Direction of Arrival (A/DOA) estimation and Beamforming techniques that can be used in the current and future engineering applications such as tracking of targets, wireless mobile communications, radar systems, etc. This thesis firstly investigates different types of AOA and beamforming techniques. A comprehensive comparison between the common AOA algorithms is performed to evaluate the estimation accuracy and illustrate the computational complexity of each algorithm. The effect of mutual coupling between the radiators and the impact of the position-error of the antenna elements on the estimation accuracy is also studied. Then, several new efficient AOA methods for current wireless localisation systems are proposed. The estimation accuracy and computational complexity are compared with well-known AOA methods over a wide range of scenarios. New methodologies for Covariance Matrix (CM) sampling are proposed to enhance and improve operational performance without increasing the computational burden. A new beamforming algorithm is proposed and implemented on a compact mm-Wave linear and planar antenna arrays to enhance the desired signal and suppress the interference sources in wireless communication systems. The issue of asset tracking in dense environments where the performance of the Global Positioning System (GPS) becomes unavailable or unreliable is addressed in the thesis as well. The proposed solution uses a low-profile array of sensors mounted on a finite conducting ground. A compact-size omnidirectional spiral sensor array of six electrically small dual-band antenna elements was designed to operate in the 402 and 837 MHz spectrum bands. For the lower band, a three-element superposition method is applied to support the estimated AOA whereas six sensors are considered for the higher band. An efficient and low complexity Projection Vector (PV) AOA method is proposed. An Orthogonal Frequency Division Multiplexing (OFDM) modulation is integrated with the PV technique to enhance the estimation resolution. The system was found to be suitable for installation on top of vehicles to localise the position of assets. The proposed system was tested to track non-stationary objectives, and then two scenarios were investigated: outdoor to outdoor and outdoor to indoor environments using Wireless In-Site Software. The results confirm that the proposed tracking system works efficiently with a single snapshot. / Higher Commission for Education Development (HCED) in Iraq Basra Oil Company Ministry of Oil
19

Ανάπτυξη και υλοποίηση τεχνικών εντοπισμού και παρακολούθησης θέσης κυρίαρχης πηγής από δίκτυα τυχαία διασκορπισμένων αισθητήρων / Development and implementation of dominant source localization and tracking techniques in randomly distributed sensor networks

Αλεξανδρόπουλος, Γεώργιος 16 May 2007 (has links)
Αντικείμενο αυτής της μεταπτυχιακής εργασίας είναι ο εντοπισμός της ύπαρξης μιας κυρίαρχης ευρείας ζώνης ισοτροπικής πηγής κι η εκτίμηση των συντεταγμένων θέσης αυτής, όταν αυτή βρίσκεται σ’ έναν τρισδιάστατο ή δισδιάστατο χώρο, ο οποίος εποπτεύεται και παρακολουθείται από ένα δίκτυο τυχαία διασκορπισμένων αισθητήρων. Οι κόμβοι του δικτύου μπορούν να περιέχουν ακουστικά, παλμικά κι άλλου είδους μικροηλεκτρομηχανολογικά στοιχεία αίσθησης του περιβάλλοντος. Κατά την αίσθηση ενός γεγονότος ενδιαφέροντος μπορούν να αυτοοργανωθούν σ’ ένα συγχρονισμένο ασύρματο ραδιοδίκτυο χρησιμοποιώντας χαμηλής κατανάλωσης πομποδέκτες spread spectrum, ώστε να επικοινωνούν μεταξύ τους και με τους κεντρικούς επεξεργαστές. Ο εντοπισμός της ύπαρξης μιας κυρίαρχης πηγής σ’ ένα δίκτυο αισθητήρων, με τα παραπάνω χαρακτηριστικά, επιτεύχθηκε με τη χρήση μιας τυφλής μεθόδου μορφοποίησης λοβού, γνωστή ως μέθοδος συλλογής της μέγιστης ισχύος. Η μέθοδος αυτή, η οποία υλοποιήθηκε στα πλαίσια αυτής της εργασίας, παρέχει τις εκτιμήσεις των σχετικών χρόνων καθυστέρησης άφιξης του σήματος της κυρίαρχης πηγής στους αισθητήρες του δικτύου ως προς έναν αισθητήρα αναφοράς. Κύριο αντικείμενο μελέτης αυτής της εργασίας είναι ο υπολογισμός του κυρίαρχου ιδιοδιανύσματος του δειγματοληπτημένου πίνακα αυτοσυσχέτισης. Αυτό επιτυγχάνεται στη βιβλιογραφία που μελετήθηκε είτε με χρήση της δυναμικής μεθόδου είτε με χρήση της μεθόδου ιδιοανάλυσης. Ανά στιγμιότυπο δειγμάτων απαιτείται η ανανέωση του πίνακα αυτοσυσχέτισης κι ο υπολογισμός του κυρίαρχου ιδιοδιανύσματος. Όμως, οι δύο παραπάνω μέθοδοι για τον υπολογισμό αυτό χρειάζονται αυξημένη πολυπλοκότητα μιας κι η διάσταση του πίνακα είναι αρκετά μεγάλη. Η συνεισφορά της εργασίας αυτής έγκειται στη μείωση αυτής της πολυπλοκότητας με τη χρήση μιας προσαρμοστικής μεθόδου υπολογισμού του κυρίαρχου ιδιοδιανύσματος. Τέλος, αντικείμενο της εργασίας αυτής είναι και το πρόβλημα εντοπισμού και παρακολούθησης των συντεταγμένων θέσης της κυρίαρχης πηγής από τις εκτιμήσεις των σχετικών χρόνων καθυστέρησης άφιξης. / Object of this postgraduate work are the detection of presence of an isotropic wideband dominant source and the estimate of its coordinates of placement (localization), when the source is found in a three or two dimensional space, which is supervised and watched by a randomly distributed sensor network. The nodes of the network may contain acoustical, vibrational and other MEM-sensing (Micro-Electro-Mechanical) elements. Upon sensing an event of interest, they can self-organize into a synchronized wireless radio network using low-power spread-spectrum transceivers to communicate among themselves and central processors. The detection of presence of a dominant source in a sensor network, with the above characteristics, was achieved with the use of a blind beamforming method, known as the maximum power collection method. This method, which was implemented in the context of this work, provides estimates of the relative time delays of arrival (relative TDEs - Time Delay Estimations) of the dominant source’s signal to the sensors of the network referenced to a reference sensor. The main object of study of the work is the calculation of the dominant eigenvector of the sampled correlation matrix. This is achieved, in the bibliography that was studied, either by using the power method or with use of the SVD method (Singular Value Decomposition). Per snapshot of samples it is required to update the autocorrelation matrix and to calculate the dominant eigenvector. However, the above two methods for this calculation have an increased complexity because the dimension of the matrix is high enough. The contribution of this work lies in the reduction of that complexity by using an adaptive method for the dominant eigenvector calculation. Finally, this work also focuses on the problem of localization and tracking of the coordinates of placement of the dominant source from the estimates of the relative time delays of arrival.

Page generated in 0.0548 seconds