• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Software agents support for personalised learning: Negotiating and e-contracting with multiple providers

Vegah, Godwill January 2012 (has links)
E-learning is increasingly adopted to support face-to-face classroom-based learning or implemented as a complete standalone learning system. Its inherent adaptable nature and ability to provide learning anywhere, everywhere and anytime makes it a versatile tool for access to basic, professional and higher education. This research proposes and develops an adaptable e-learning approach, focusing on the learner's requirement specification and negotiation of course with multiple providers to improve online learning. This addresses issues of inflexible learning model, narrow coverage of subject domains in existing systems and ineffective use of educational resources, using design research methodology (DRM). The proposed Intelligent Learning approach provides learning support by applying collaborative and deliberative capabilities of software agents to e-learning systems. Designated learning support agents negotiate with providers on behalf of the learner for courses, matching specified requirements. This is achieved through agent negotiation strategies, devising dynamic learning plans (DPLAN) and online learning contract (or EContract) between the system and a range of providers, to harness the changing needs of the learner, hence, providing an Adaptive Agent Learner Plan (ADALP) approach. It develops and applies a 'Basic Requirements Learning' model, addressing specific learning objectives, supported by a two way evaluation process that enforces learning flexibility, empowering learners and accommodating a wide spectrum of learning needs. Unlike traditional Intelligent Tutoring System (ITS), learning objectives are not fixed and are constituted dynamically from learner specifications. The ADALP approach provides multiple provider support options, generating learner feedback for goal oriented, but flexible learning. This deviates from the traditional 'top-down' approach, where instructors and designers create fixed models of different categories of learners and their needs. The prototype of multi-agent system (MAS) demonstrates contributions of the approach, applying Multi-issue-Negotiation and Contracting Courses with Multiple Providers; devising dynamic personalised learning plans and learning commitment (or e-contracts) between learners and providers. It implements designated agents which generate tasks and sub-tasks corresponding to the learners' goals and objectives; 'biding' for learning and tutoring resources from multiple providers to deliver on the derived tasks. Personalised learning plan aligned with online learning contract is generated for each learner based on the specified requirements and learning goals, as a result. It is argued that the ADALP approach empowers learners and improves on similar approaches, in comparison to existing adaptive learning systems.
2

Adaptive Systems for Smart Buildings Utilizing Wireless Sensor Networks and Artificial Intelligence

Qela, Blerim 12 January 2012 (has links)
In this thesis, research efforts are dedicated towards the development of practical adaptable techniques to be used in Smart Homes and Buildings, with the aim to improve energy management and conservation, while enhancing the learning capabilities of Programmable Communicating Thermostats (PCT) – “transforming” them into smart adaptable devices, i.e., “Smart Thermostats”. An Adaptable Hybrid Intelligent System utilizing Wireless Sensor Network (WSN) and Artificial Intelligence (AI) techniques is presented, based on which, a novel Adaptive Learning System (ALS) model utilizing WSN, a rule-based system and Adaptive Resonance Theory (ART) concepts is proposed. The main goal of the ALS is to adapt to the occupant’s pattern and/or schedule changes by providing comfort, while not ignoring the energy conservation aspect. The proposed ALS analytical model is a technique which enables PCTs to learn and adapt to user input pattern changes and/or other parameters of interest. A new algorithm for finding the global maximum in a predefined interval within a two dimensional space is proposed. The proposed algorithm is a synergy of reward/punish concepts from the reinforcement learning (RL) and agent-based technique, for use in small-scale embedded systems with limited memory and/or processing power, such as the wireless sensor/actuator nodes. An application is implemented to observe the algorithm at work and to demonstrate its main features. It was observed that the “RL and Agent-based Search”, versus the “RL only” technique, yielded better performance results with respect to the number of iterations and function evaluations needed to find the global maximum. Furthermore, a “House Simulator” is developed as a tool to simulate house heating/cooling systems and to assist in the practical implementation of the ALS model under different scenarios. The main building blocks of the simulator are the “House Simulator”, the “Smart Thermostat”, and a placeholder for the “Adaptive Learning Models”. As a result, a novel adaptive learning algorithm, “Observe, Learn and Adapt” (OLA) is proposed and demonstrated, reflecting the main features of the ALS model. Its evaluation is achieved with the aid of the “House Simulator”. OLA, with the use of sensors and the application of the ALS model learning technique, captures the essence of an actual PCT reflecting a smart and adaptable device. The experimental performance results indicate adaptability and potential energy savings of the single in comparison to the zone controlled scenarios with the OLA capabilities being enabled.
3

Adaptive Systems for Smart Buildings Utilizing Wireless Sensor Networks and Artificial Intelligence

Qela, Blerim 12 January 2012 (has links)
In this thesis, research efforts are dedicated towards the development of practical adaptable techniques to be used in Smart Homes and Buildings, with the aim to improve energy management and conservation, while enhancing the learning capabilities of Programmable Communicating Thermostats (PCT) – “transforming” them into smart adaptable devices, i.e., “Smart Thermostats”. An Adaptable Hybrid Intelligent System utilizing Wireless Sensor Network (WSN) and Artificial Intelligence (AI) techniques is presented, based on which, a novel Adaptive Learning System (ALS) model utilizing WSN, a rule-based system and Adaptive Resonance Theory (ART) concepts is proposed. The main goal of the ALS is to adapt to the occupant’s pattern and/or schedule changes by providing comfort, while not ignoring the energy conservation aspect. The proposed ALS analytical model is a technique which enables PCTs to learn and adapt to user input pattern changes and/or other parameters of interest. A new algorithm for finding the global maximum in a predefined interval within a two dimensional space is proposed. The proposed algorithm is a synergy of reward/punish concepts from the reinforcement learning (RL) and agent-based technique, for use in small-scale embedded systems with limited memory and/or processing power, such as the wireless sensor/actuator nodes. An application is implemented to observe the algorithm at work and to demonstrate its main features. It was observed that the “RL and Agent-based Search”, versus the “RL only” technique, yielded better performance results with respect to the number of iterations and function evaluations needed to find the global maximum. Furthermore, a “House Simulator” is developed as a tool to simulate house heating/cooling systems and to assist in the practical implementation of the ALS model under different scenarios. The main building blocks of the simulator are the “House Simulator”, the “Smart Thermostat”, and a placeholder for the “Adaptive Learning Models”. As a result, a novel adaptive learning algorithm, “Observe, Learn and Adapt” (OLA) is proposed and demonstrated, reflecting the main features of the ALS model. Its evaluation is achieved with the aid of the “House Simulator”. OLA, with the use of sensors and the application of the ALS model learning technique, captures the essence of an actual PCT reflecting a smart and adaptable device. The experimental performance results indicate adaptability and potential energy savings of the single in comparison to the zone controlled scenarios with the OLA capabilities being enabled.
4

Adaptive Systems for Smart Buildings Utilizing Wireless Sensor Networks and Artificial Intelligence

Qela, Blerim 12 January 2012 (has links)
In this thesis, research efforts are dedicated towards the development of practical adaptable techniques to be used in Smart Homes and Buildings, with the aim to improve energy management and conservation, while enhancing the learning capabilities of Programmable Communicating Thermostats (PCT) – “transforming” them into smart adaptable devices, i.e., “Smart Thermostats”. An Adaptable Hybrid Intelligent System utilizing Wireless Sensor Network (WSN) and Artificial Intelligence (AI) techniques is presented, based on which, a novel Adaptive Learning System (ALS) model utilizing WSN, a rule-based system and Adaptive Resonance Theory (ART) concepts is proposed. The main goal of the ALS is to adapt to the occupant’s pattern and/or schedule changes by providing comfort, while not ignoring the energy conservation aspect. The proposed ALS analytical model is a technique which enables PCTs to learn and adapt to user input pattern changes and/or other parameters of interest. A new algorithm for finding the global maximum in a predefined interval within a two dimensional space is proposed. The proposed algorithm is a synergy of reward/punish concepts from the reinforcement learning (RL) and agent-based technique, for use in small-scale embedded systems with limited memory and/or processing power, such as the wireless sensor/actuator nodes. An application is implemented to observe the algorithm at work and to demonstrate its main features. It was observed that the “RL and Agent-based Search”, versus the “RL only” technique, yielded better performance results with respect to the number of iterations and function evaluations needed to find the global maximum. Furthermore, a “House Simulator” is developed as a tool to simulate house heating/cooling systems and to assist in the practical implementation of the ALS model under different scenarios. The main building blocks of the simulator are the “House Simulator”, the “Smart Thermostat”, and a placeholder for the “Adaptive Learning Models”. As a result, a novel adaptive learning algorithm, “Observe, Learn and Adapt” (OLA) is proposed and demonstrated, reflecting the main features of the ALS model. Its evaluation is achieved with the aid of the “House Simulator”. OLA, with the use of sensors and the application of the ALS model learning technique, captures the essence of an actual PCT reflecting a smart and adaptable device. The experimental performance results indicate adaptability and potential energy savings of the single in comparison to the zone controlled scenarios with the OLA capabilities being enabled.
5

Adaptive Systems for Smart Buildings Utilizing Wireless Sensor Networks and Artificial Intelligence

Qela, Blerim January 2012 (has links)
In this thesis, research efforts are dedicated towards the development of practical adaptable techniques to be used in Smart Homes and Buildings, with the aim to improve energy management and conservation, while enhancing the learning capabilities of Programmable Communicating Thermostats (PCT) – “transforming” them into smart adaptable devices, i.e., “Smart Thermostats”. An Adaptable Hybrid Intelligent System utilizing Wireless Sensor Network (WSN) and Artificial Intelligence (AI) techniques is presented, based on which, a novel Adaptive Learning System (ALS) model utilizing WSN, a rule-based system and Adaptive Resonance Theory (ART) concepts is proposed. The main goal of the ALS is to adapt to the occupant’s pattern and/or schedule changes by providing comfort, while not ignoring the energy conservation aspect. The proposed ALS analytical model is a technique which enables PCTs to learn and adapt to user input pattern changes and/or other parameters of interest. A new algorithm for finding the global maximum in a predefined interval within a two dimensional space is proposed. The proposed algorithm is a synergy of reward/punish concepts from the reinforcement learning (RL) and agent-based technique, for use in small-scale embedded systems with limited memory and/or processing power, such as the wireless sensor/actuator nodes. An application is implemented to observe the algorithm at work and to demonstrate its main features. It was observed that the “RL and Agent-based Search”, versus the “RL only” technique, yielded better performance results with respect to the number of iterations and function evaluations needed to find the global maximum. Furthermore, a “House Simulator” is developed as a tool to simulate house heating/cooling systems and to assist in the practical implementation of the ALS model under different scenarios. The main building blocks of the simulator are the “House Simulator”, the “Smart Thermostat”, and a placeholder for the “Adaptive Learning Models”. As a result, a novel adaptive learning algorithm, “Observe, Learn and Adapt” (OLA) is proposed and demonstrated, reflecting the main features of the ALS model. Its evaluation is achieved with the aid of the “House Simulator”. OLA, with the use of sensors and the application of the ALS model learning technique, captures the essence of an actual PCT reflecting a smart and adaptable device. The experimental performance results indicate adaptability and potential energy savings of the single in comparison to the zone controlled scenarios with the OLA capabilities being enabled.

Page generated in 0.0707 seconds