Spelling suggestions: "subject:"adaptive markov chain fonte carlo"" "subject:"adaptive markov chain fonte sarlo""
1 |
Slice Sampling with Multivariate StepsThompson, Madeleine 11 January 2012 (has links)
Markov chain Monte Carlo (MCMC) allows statisticians to sample from a wide variety of multidimensional probability distributions. Unfortunately, MCMC is often difficult to use when components of the target distribution are highly correlated or have disparate variances. This thesis presents three results that attempt to address this problem. First, it demonstrates a means for graphical comparison of MCMC methods, which allows researchers to compare the behavior of a variety of samplers on a variety of distributions. Second, it presents a collection of new slice-sampling MCMC methods. These methods either adapt globally or use the adaptive crumb framework for sampling with multivariate steps. They perform well with minimal tuning on distributions when popular methods do not. Methods in the first group learn an approximation to the covariance of the target distribution and use its eigendecomposition to take non-axis-aligned steps. Methods in the second group use the gradients at rejected proposed moves to approximate the local shape of the target distribution so that subsequent proposals move more efficiently through the state space. Finally, this thesis explores the scaling of slice sampling with multivariate steps with respect to dimension, resulting in a formula for optimally choosing scale tuning parameters. It shows that the scaling of untransformed methods can sometimes be improved by alternating steps from those methods with radial steps based on those of the polar slice sampler.
|
2 |
Slice Sampling with Multivariate StepsThompson, Madeleine 11 January 2012 (has links)
Markov chain Monte Carlo (MCMC) allows statisticians to sample from a wide variety of multidimensional probability distributions. Unfortunately, MCMC is often difficult to use when components of the target distribution are highly correlated or have disparate variances. This thesis presents three results that attempt to address this problem. First, it demonstrates a means for graphical comparison of MCMC methods, which allows researchers to compare the behavior of a variety of samplers on a variety of distributions. Second, it presents a collection of new slice-sampling MCMC methods. These methods either adapt globally or use the adaptive crumb framework for sampling with multivariate steps. They perform well with minimal tuning on distributions when popular methods do not. Methods in the first group learn an approximation to the covariance of the target distribution and use its eigendecomposition to take non-axis-aligned steps. Methods in the second group use the gradients at rejected proposed moves to approximate the local shape of the target distribution so that subsequent proposals move more efficiently through the state space. Finally, this thesis explores the scaling of slice sampling with multivariate steps with respect to dimension, resulting in a formula for optimally choosing scale tuning parameters. It shows that the scaling of untransformed methods can sometimes be improved by alternating steps from those methods with radial steps based on those of the polar slice sampler.
|
3 |
Bayesian Inference for Bivariate Conditional Copula Models with Continuous or Mixed OutcomesSabeti, Avideh 12 August 2013 (has links)
The main goal of this thesis is to develop Bayesian model for studying the influence of
covariate on dependence between random variables. Conditional copula models are flexible tools for modelling complex dependence structures. We construct Bayesian inference for the conditional copula model adapted to regression settings in which the bivariate outcome is continuous or mixed (binary and continuous) and the copula parameter varies with covariate values. The functional relationship between the copula parameter and the covariate is modelled using cubic splines. We also extend our work to additive models which would allow us to handle more than one covariate while keeping the computational burden within reasonable limits. We perform the proposed joint Bayesian inference via adaptive Markov chain Monte Carlo sampling. The deviance information criterion and cross-validated marginal log-likelihood criterion are employed for three model selection problems: 1) choosing the copula family that best fits the data, 2) selecting the calibration function, i.e., checking if parametric form for copula parameter is suitable and 3) determining the number of independent variables in the additive model. The performance of the estimation and model selection techniques are investigated via simulations and demonstrated on two data sets: 1) Matched Multiple Birth and 2) Burn Injury. In which of interest is the influence of gestational age and maternal age on twin birth weights in the former data, whereas in the later data we are interested in investigating how patient’s age affects the severity of burn injury and the probability of death.
|
4 |
Bayesian Inference for Bivariate Conditional Copula Models with Continuous or Mixed OutcomesSabeti, Avideh 12 August 2013 (has links)
The main goal of this thesis is to develop Bayesian model for studying the influence of
covariate on dependence between random variables. Conditional copula models are flexible tools for modelling complex dependence structures. We construct Bayesian inference for the conditional copula model adapted to regression settings in which the bivariate outcome is continuous or mixed (binary and continuous) and the copula parameter varies with covariate values. The functional relationship between the copula parameter and the covariate is modelled using cubic splines. We also extend our work to additive models which would allow us to handle more than one covariate while keeping the computational burden within reasonable limits. We perform the proposed joint Bayesian inference via adaptive Markov chain Monte Carlo sampling. The deviance information criterion and cross-validated marginal log-likelihood criterion are employed for three model selection problems: 1) choosing the copula family that best fits the data, 2) selecting the calibration function, i.e., checking if parametric form for copula parameter is suitable and 3) determining the number of independent variables in the additive model. The performance of the estimation and model selection techniques are investigated via simulations and demonstrated on two data sets: 1) Matched Multiple Birth and 2) Burn Injury. In which of interest is the influence of gestational age and maternal age on twin birth weights in the former data, whereas in the later data we are interested in investigating how patient’s age affects the severity of burn injury and the probability of death.
|
5 |
MCMC adaptatifs à essais multiplesFontaine, Simon 09 1900 (has links)
No description available.
|
Page generated in 0.363 seconds