• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 21
  • 12
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 190
  • 190
  • 40
  • 38
  • 33
  • 32
  • 31
  • 29
  • 27
  • 21
  • 20
  • 18
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Advanced wavefront sensing and astrometric techniques for the next generation of extremely large telescopes

Taheri, Mojtaba 29 April 2022 (has links)
The new generation of giant ground-based telescopes will see their first light this decade. These state-of-the-art facilities will significantly surpass the resolving power of modern space-based observatories such as the James Webb telescope, thanks to their enormous aperture size and adaptive optics (AO) facilities. Without AO, atmospheric turbulence would degrade the image quality of these enormous telescopes to that of a 50 cm amateur one. These extremely large telescopes (ELTs) will further benefit from a particular branch of AO called multi-conjugate adaptive optics (MCAO), which provides an extremely high resolving power over a much wider field of view as compared to classical AO systems. The design and fabrication of such systems, as well as their optimal use for science operation, pose a great challenge as they are an order of magnitude more complicated than current AO systems. To face such a challenge, the combined knowledge of MCAO system design and fabrication, working in tandem with scientific insights into new astronomy science cases, is an extremely valuable and essential pairing. This thesis is an effort to not only contribute to the design and fabrication of ELT MCAO facilities, but also provide guidance on the optimal method to utilize these giant telescopes to achieve unprecedented astrometric measurements. On the instrumentation side, in partnership with the National Research Council of Canada's - Herzberg Astronomy and Astrophysics Institute as well as W.M. Keck Observatory in Hawaii, I was involved in the design and fabrication of a cutting edge new wavefront sensor, which is the eye of an AO system. I performed opto-mechanical design and verification studies for components of the Keck infrared pyramid wavefront sensor (IR-PWFS) as well as the Keck Planet Imager and characterizer (KPIC) instrument, which have both been commissioned and are in science operation. Furthermore, I designed the alignment plan and participated in the modification and alignment operation of a few components on the Keck II adaptive optics bench on the summit of Mauna Kea. To pave the way for the design verification of future MCAO systems for ELTs, I proposed a new method for an old challenge in the path of AO system design and verification: a flexible method for precise intensity pattern injection into laboratory AO benches. AO benches are the backbone of instrument design and modeling. One of the challenges especially important for the future generation of MCAO systems for ELTs is the verification of the effect of shadowed regions on the primary mirror. During my PhD, I successfully demonstrated the feasibility of a new proposed method to accurately model the telescope pupil. This work was done in partnership with the Laboratoire d'Astrophysique de Marseille (LAM) in France. The method I developed at LAM will be implemented in the AO Lab at NRC Herzberg Astronomy and Astrophysics. As an observational astronomer, I focused on developing methods for making optimal astrometric measurements with MCAO-enabled telescopes. The expected unparalleled astrometric precision of ELTs comes with many unprecedented challenges that if left unresolved, would jeopardize the success of these facilities as they would not be able to reach their science goals. I used observations with the only available MCAO system in science operation, the Gemini MCAO system on the 8-meter Gemini South telescope in Chile, to develop and verify a pipeline specifically designed for very high-precision astrometric studies with MCAO-fed imagers. I successfully used the pipeline to provide the precise on-sky differential distortion of the Gemini South telescope and its MCAO facilities by looking deep into the core of globular cluster NGC~6723. Using this pipeline, I produced high quality proper motions with an uncertainty floor of $\sim 45$\,$\mu$as~yr$^{-1}$ as well as measured the proper motion dispersion profile of NGC~6723 from a radius of $\sim 10$ arcseconds out to $\sim 1$\,arcminute, based on $\sim 12000$ stars. I also produced a high-quality optical-near-infrared color magnitude diagram which clearly shows the extreme horizontal branch and main-sequence knee of this cluster. / Graduate
52

Next generation wavefront controller for the MMT adaptive optics system: Algorithms and techniques for mitigating dynamic wavefront aberrations

Powell, Keith January 2012 (has links)
Wavefront controller optimization is important in achieving the best possible image quality for adaptive optics systems on the current generation of large and very large aperture telescopes. This will become even more critical when we consider the demands of the next generation of extremely large telescopes currently under development. These telescopes will be capable of providing resolution which is significantly greater than the current generation of optical/IR telescopes. However, reaching the full resolving potential of these instruments will require a careful analysis of all disturbance sources, then optimizing the wavefront controller to provide the best possible image quality given the desired science goals and system constraints. Along with atmospheric turbulence and sensor noise, structural vibration will play an important part in determining the overall image quality obtained. The next generation of very large aperture telescopes currently being developed will require assessing the effects of structural vibration on closed loop AO system performance as an integral part of the overall system design. Telescope structural vibrations can seriously degrade image quality, resulting in actual spot full width half maximum (FWHM) and angular resolution much worse than the theoretical limit. Strehl ratio can also be significantly degraded by structural vibration as energy is dispersed over a much larger area of the detector. In addition to increasing telescope diameter to obtain higher resolution, there has also been significant interest in adaptive optics systems which observe at shorter wavelength from the near infrared to visible (VNIR) wavelengths, at or near 0.7 microns. This will require significant reduction in the overall wavefront residuals as compared with current systems, and will therefore make assessment and optimization of the wavefront controller even more critical for obtaining good AO system performance in the VNIR regime.
53

High-Precision Astrometry Using a Diffractive Pupil and Advancements in Multi-Laser Adaptive Optics

Bendek, Eduardo A. January 2012 (has links)
Detection of earth-size exoplanets using the astrometric signal of the host star requires sub-microarcsecond measurement precision. One major challenge in achieving this precision using a medium-size (< 2-m) space telescope is the calibration of dynamic distortions. A diffractive pupil can be used to generate polychromatic diffraction spikes in the focal plane, which encode the distortions in the optical system and may be used to calibrate astrometric measurements. The first half of this dissertation discusses the design and construction of a laboratory to test this concept. The main components of the system are a high stability star simulator, a diffraction limited off-axis optical system, and the data reduction algorithms to obtain the distortion map calibration. Currently, the laboratory is operational and first tests of distortion measurements have been done validating this concept to improve the astrometric accuracy of a telescope. The second part of this dissertation describes the use of the multi-laser guide star (LGS) system available at the 6.5 m MMT telescope to characterize GLAO performance and advance Laser Tomography Adaptive Optics (LTAO) technology. The system uses five range-gated and dynamically refocused Rayleigh laser beacons to sense the atmospheric wavefront aberration. Corrections are then applied to the wavefront using the 336-actuator adaptive secondary mirror of the telescope. So far, the system has demonstrated successful control of ground-layer aberration over a field of view (FoV) substantially wider than is delivered by conventional adaptive optics, yielding reduction in the width of the on-axis point-spread function from 1.07" to < 0.2" in H band. Both techniques can be combined to improve the astrometric accuracy of ground based telescopes, especially when using Multi-Conjugated Adaptive Optics (MCAO). A diffractive pupil can be used to calibrate the distortions induced by multiple Deformable Mirrors (DM), which is the main limitation to use this kind of AO system for high precision astrometric measurements.
54

Adaptive optic demonstrators for extremely large telescopes

Campbell, Michael Aloysius January 2011 (has links)
The next generation of ground-based optical/infrared (IR) telescopes will have primary mirrors of up to 42 m. To take advantage of the large potential increase in angular resolution, adaptive optics will be essential to overcome the resolution limits set by atmospheric turbulence. Novel techniques such as Multi-Conjugate Adaptive Optics (MCAO) and Multi-Object Adaptive Optics (MOAO) are being developed to achieve near diffraction-limited images over large fields-of-view. This thesis concerns the development of MCAO and MOAO pathfinders. Specifically, the construction of CANARY, aMOAO demonstrator, and the on-sky performance and scientific exploitation of the Multi-conjugate Adaptive optics Demonstrator (MAD). CANARY is under construction for the William Herschel Telescope (WHT) in La Palma and contains a telescope simulator to allow testing of the set-up in the laboratory. The simulator contains a natural guide star emulator, turbulence phase screens, and telescope relay optics. The work presented here concerns the integration of the various components in relation to numerical models and the CANARY specifications. MAD was a near-IR imager on the Very Large Telescope (VLT) in Chile. Science demonstration observations were taken of R136, the young, massive cluster situated in the 30 Doradus star-forming region in the Large Magellanic Cloud. These data were used here to determine the MCAO performance across the ~1’x1’ field-of-view, for different pointings with respect to the guide stars, finding high Strehl ratios and relatively uniform corrections across the fields. The MAD data are then used to construct radial surface brightness profiles for R136, providing new insights into intriguing past results from the Hubble Space Telescope. The MAD data reveal that the profile is strongly asymmetric, removing the need for dramatic dynamical evolution of the cluster in the recent past, and highlighting the importance of considering asymmetries when analysing clusters further afield. The MAD data, combined with other near-IR imaging from the VLT, are then used to investigate the nature of candidate young stellar objects from recent observations with the Spitzer Space Telescope.
55

SCExAO AND GPI Y JH BAND PHOTOMETRY AND INTEGRAL FIELD SPECTROSCOPY OF THE YOUNG BROWN DWARF COMPANION TO HD 1160

Garcia, E. Victor, Currie, Thayne, Guyon, Olivier, Stassun, Keivan G., Jovanovic, Nemanja, Lozi, Julien, Kudo, Tomoyuki, Doughty, Danielle, Schlieder, Josh, Kwon, J., Uyama, T., Kuzuhara, M., Carson, J. C., Nakagawa, T., Hashimoto, J., Kusakabe, N., Abe, L., Brandner, W., Brandt, T. D., Feldt, M., Goto, M., Grady, C. A., Hayano, Y., Hayashi, M., Hayashi, S. S., Henning, T., Hodapp, K. W., Ishii, M., Iye, M., Janson, M., Kandori, R., Knapp, G. R., Matsuo, T., McElwain, M. W., Miyama, S., Morino, J.-I., Moro-Martin, A., Nishimura, T., Pyo, T.-S., Serabyn, E., Suenaga, T., Suto, H., Suzuki, R., Takahashi, Y. H., Takami, H., Takami, M., Takato, N., Terada, H., Thalmann, C., Turner, E. L., Watanabe, M., Wisniewski, J., Yamada, T., Usuda, T., Tamura, M. 10 January 2017 (has links)
We present high signal-to-noise ratio, precise Y JH photometry and Y band (0.957-1.120 mu m) spectroscopy of HD 1160 B, a young substellar companion discovered from the Gemini NICI Planet Finding Campaign using the Subaru Coronagraphic Extreme Adaptive Optics instrument and the Gemini Planet Imager. HD 1160 B has typical mid-M dwarf-like infrared colors and a spectral type of M5.5(-0.5)(+1.0), where the blue edge of our Y band spectrum rules out earlier spectral types. Atmospheric modeling suggests HD 1160 B has an effective temperature of 3000-3100 K, a surface gravity of log g - 4-4.5, a radius of. 1.55 +/- 0.10 R-J, and a luminosity of log L/L circle dot - 2.76 +/- 0.05. Neither the primary's Hertzspring-Russell diagram position nor atmospheric modeling of HD 1160 B show evidence for a subsolar metallicity. Interpretation of the HD 1160 B spectroscopy depends on which stellar system components are used to estimate the age. Considering HD 1160 A, B and C jointly, we derive an age of 80-125 Myr, implying that HD 1160 B straddles the hydrogen-burning limit (70-90 M-J) If we consider HD 1160 A alone, younger ages (20-125 Myr) and a brown dwarf-like mass (35-90 M-J) are possible. Interferometric measurements of the primary, a precise Gaia parallax, and moderate-resolution spectroscopy can better constrain the system's age and how HD 1160 B fits within the context of (sub) stellar evolution.
56

High-contrast imaging in the cloud with klipReduce and Findr

Haug-Baltzell, Asher, Males, Jared R., Morzinski, Katie M., Wu, Ya-Lin, Merchant, Nirav, Lyons, Eric, Close, Laird M. 08 August 2016 (has links)
Astronomical data sets are growing ever larger, and the area of high contrast imaging of exoplanets is no exception. With the advent of fast, low-noise detectors operating at 10 to 1000 Hz, huge numbers of images can be taken during a single hours-long observation. High frame rates offer several advantages, such as improved registration, frame selection, and improved speckle calibration. However, advanced image processing algorithms are computationally challenging to apply. Here we describe a parallelized, cloud-based data reduction system developed for the Magellan Adaptive Optics VisAO camera, which is capable of rapidly exploring tens of thousands of parameter sets affecting the Karhunen-Loeve image processing (KLIP) algorithm to produce high-quality direct images of exoplanets. We demonstrate these capabilities with a visible-wavelength high contrast data set of a hydrogen-accreting brown dwarf companion.
57

MagAO: status and science

Morzinski, Katie M., Close, Laird M., Males, Jared R., Hinz, Phil M., Esposito, Simone, Riccardi, Armando, Briguglio, Runa, Follette, Katherine B., Pinna, Enrico, Puglisi, Alfio, Vezilj, Jennifer, Xompero, Marco, Wu, Ya-Lin 26 July 2016 (has links)
MagAO is the adaptive optics instrument at the Magellan Clay telescope at Las Campanas Observatory, Chile. MagAO has a 585-actuator adaptive secondary mirror and 1000-Hz pyramid wavefront sensor, operating on natural guide stars from R-magnitudes of -1 to 15. MagAO has been in on-sky operation for 166 nights since installation in 2012. MagAO's unique capabilities are simultaneous imaging in the visible and infrared with VisAO and Clio, excellent performance at an excellent site, and a lean operations model. Science results from MagAO include the first ground-based CCD image of an exoplanet, demonstration of the first accreting protoplanets, discovery of a new wide-orbit exoplanet, and the first empirical bolometric luminosity of an exoplanet. We describe the status, report the AO performance, and summarize the science results. New developments reported here include color corrections on red guide stars for the wavefront sensor; a new field stop stage to facilitate VisAO imaging of extended sources; and eyepiece observing at the visible-light diffraction limit of a 6.5-m telescope. We also discuss a recent hose failure that led to a glycol coolant leak, and the recovery of the adaptive secondary mirror (ASM) after this recent (Feb. 2016) incident.
58

Vibrations in MagAO: frequency-based analysis of on-sky data, resonance sources identification, and future challenges in vibrations mitigation

Zúñiga, Sebastián, Garcés, Javier, Close, Laird M., Males, Jared R., Morzinski, Katie M., Escárate, Pedro, Castro, Mario, Marchioni, José, Zagals, Diego 27 July 2016 (has links)
Frequency-based analysis and comparisons of tip-tilt on-sky data registered with 6.5 Magellan Telescope Adaptive Optics (MagAO) system on April and Oct 2014 was performed. Twelve tests are conducted under different operation conditions in order to observe the influence of system instrumentation (such as fans, pumps and louvers). Vibration peaks can be detected, power spectral densities (PSDs) are presented to reveal their presence. Instrumentation-induced resonances, close-loop gain and future challenges in vibrations mitigation techniques are discussed.
59

Closed-loop focal plane wavefront control with the SCExAO instrument

Martinache, Frantz, Jovanovic, Nemanja, Guyon, Olivier 06 September 2016 (has links)
Aims. This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods. This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system. This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results. This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions. Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground-as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.
60

ASTROMETRIC MONITORING OF THE HR 8799 PLANETS: ORBIT CONSTRAINTS FROM SELF-CONSISTENT MEASUREMENTS

Konopacky, Q. M., Marois, C., Macintosh, B. A., Galicher, R., Barman, T. S., Metchev, S. A., Zuckerman, B. 08 1900 (has links)
We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 m telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this data set, we detect acceleration for two of the planets (HR 8799b and e) at >3 sigma. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns chi(2) consistent to within 1 sigma of the best fit values, suggesting that if inclination offsets of less than or similar to 20 degrees are present, they are not detectable with current data. Our orbital fits also favor low eccentricities, consistent with predictions from dynamical modeling. We also find period distributions consistent to within 1 sigma with a 1:2:4:8 resonance between all planets. This analysis demonstrates the importance of minimizing astrometric systematics when fitting for solutions to highly undersampled orbits.

Page generated in 0.0561 seconds