• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Location-free node scheduling schemes for energy efficient, fault tolerant and adaptive sensing in wireless sensor networks

Pazand, Babak January 2008 (has links)
Node scheduling is one of the most effective techniques to maximize the lifetime of a wireless sensor network. It is the process of selecting a subset of nodes to monitor the sensor field on behalf of redundant nodes. At every round of the scheduling a small group of nodes are active while the rest of the sensor nodes are in sleep mode. In this thesis, we propose a novel node scheduling solution for wireless sensor networks. The main characteristic of our approach is its independence from location information as well as distance information. Moreover, it does not rely on unrealistic circular radio propagation models. In order to have a comprehensive solution, we have considered different relations between sensing range and transmission range. When these ranges are equal in addition to the case that transmission range is higher than sensing range, we devise a node scheduling scheme based on the concept of Minimum Dominating Set. Two heuristics are presented to determine a collection of minimum dominating sets of the graph of the wireless sensor network. At each round of the scheduling only one set is active. Minimum dominating sets are scheduled to be rotated periodically. Moreover, every set is synchronized prior to the end of its active period in order to minimize the effect of clock drift of sensor nodes. Two components are considered to address node failures during the on-duty period of minimum dominating sets. These are probing environment and adaptive sleeping. The former is responsible for probing the working nodes of the active set to detect any node failure. The latter adjusts the frequency of probing for minimizing the overhead of probing while preserving an adequate level of robustness for discovery of node failure. This framework is based on the PEAS protocol that has been developed by Fan Ye et al. [98, 99]. We propose a different node scheduling scheme with a three-tier architecture for the case that sensing range is higher than transmission range. The coverage tier includes a set of nodes to monitor the region of the interest. We propose a heuristic to determine a collection of d-dominating sets of the graph of the wireless sensor network. At every round of the scheduling one d-dominating set forms the coverage tier. Connectivity tier consists of sensor nodes that relay the data collected at the coverage tier back to the base station. Finally, the coverage management tier is responsible for managing different patterns of coverage such as cyclic or uniform coverage.
2

Analysis and synthesis of collaborative opportunistic navigation systems

Kassas, Zaher 09 July 2014 (has links)
Navigation is an invisible utility that is often taken for granted with considerable societal and economic impacts. Not only is navigation essential to our modern life, but the more it advances, the more possibilities are created. Navigation is at the heart of three emerging fields: autonomous vehicles, location-based services, and intelligent transportation systems. Global navigation satellite systems (GNSS) are insufficient for reliable anytime, anywhere navigation, particularly indoors, in deep urban canyons, and in environments under malicious attacks (e.g., jamming and spoofing). The conventional approach to overcome the limitations of GNSS-based navigation is to couple GNSS receivers with dead reckoning sensors. A new paradigm, termed opportunistic navigation (OpNav), is emerging. OpNav is analogous to how living creatures naturally navigate: by learning their environment. OpNav aims to exploit the plenitude of ambient radio frequency signals of opportunity (SOPs) in the environment. OpNav radio receivers, which may be handheld or vehicle-mounted, continuously search for opportune signals from which to draw position and timing information, employing on-the-fly signal characterization as necessary. In collaborative opportunistic navigation (COpNav), multiple receivers share information to construct and continuously refine a global signal landscape. For the sake of motivation, consider the following problem. A number of receivers with no a priori knowledge about their own states are dropped in an environment comprising multiple unknown terrestrial SOPs. The receivers draw pseudorange observations from the SOPs. The receivers' objective is to build a high-fidelity signal landscape map of the environment within which they localize themselves in space and time. We then ask: (i) Under what conditions is the environment fully observable? (ii) In cases where the environment is not fully observable, what are the observable states? (iii) How would receiver-controlled maneuvers affect observability? (iv) What is the degree of observability of the various states in the environment? (v) What motion planning strategy should the receivers employ for optimal information gathering? (vi) How effective are receding horizon strategies over greedy for receiver trajectory optimization, and what are their limitations? (vii) What level of collaboration between the receivers achieves a minimal price of anarchy? This dissertation addresses these fundamental questions and validates the theoretical conclusions numerically and experimentally. / text
3

Active Control Strategies for Chemical Sensors and Sensor Arrays

Gosangi, Rakesh 16 December 2013 (has links)
Chemical sensors are generally used as one-dimensional devices, where one measures the sensor’s response at a fixed setting, e.g., infrared absorption at a specific wavelength, or conductivity of a solid-state sensor at a specific operating temperature. In many cases, additional information can be extracted by modulating some internal property (e.g., temperature, voltage) of the sensor. However, this additional information comes at a cost (e.g., sensing times, power consumption), so offline optimization techniques (such as feature-subset selection) are commonly used to identify a subset of the most informative sensor tunings. An alternative to offline techniques is active sensing, where the sensor tunings are adapted in real-time based on the information obtained from previous measurements. Prior work in domains such as vision, robotics, and target tracking has shown that active sensing can schedule agile sensors to manage their sensing resources more efficiently than passive sensing, and also balance between sensing costs and performance. Inspired from the history of active sensing, in this dissertation, we developed active sensing algorithms that address three different computational problems in chemical sensing. First, we consider the problem of classification with a single tunable chemical sensor. We formulate the classification problem as a partially observable Markov decision process, and solve it with a myopic algorithm. At each step, the algorithm estimates the utility of each sensing configuration as the difference between expected reduction in Bayesian risk and sensing cost, and selects the configuration with maximum utility. We evaluated this approach on simulated Fabry-Perot interferometers (FPI), and experimentally validated on metal-oxide (MOX) sensors. Our results show that the active sensing method obtains better classification performance than passive sensing methods, and also is more robust to additive Gaussian noise in sensor measurements. Second, we consider the problem of estimating concentrations of the constituents in a gas mixture using a tunable sensor. We formulate this multicomponent-analysis problem as that of probabilistic state estimation, where each state represents a different concentration profile. We maintain a belief distribution that assigns a probability to each profile, and update the distribution by incorporating the latest sensor measurements. To select the sensor’s next operating configuration, we use a myopic algorithm that chooses the operating configuration expected to best reduce the uncertainty in the future belief distribution. We validated this approach on both simulated and real MOX sensors. The results again demonstrate improved estimation performance and robustness to noise. Lastly, we present an algorithm that extends active sensing to sensor arrays. This algorithm borrows concepts from feature subset selection to enable an array of tunable sensors operate collaboratively for the classification of gas samples. The algorithm constructs an optimized action vector at each sensing step, which contains separate operating configurations for each sensor in the array. When dealing with sensor arrays, one needs to account for the correlation among sensors. To this end, we developed two objective functions: weighted Fisher scores, and dynamic mutual information, which can quantify the discriminatory information and redundancy of a given action vector with respect to the measurements already acquired. Once again, we validated the approach on simulated FPI arrays and experimentally tested it on an array of MOX sensors. The results show improved classification performance and robustness to additive noise.
4

Adaptive Methods within a Sequential Bayesian Approach for Structural Health Monitoring

January 2013 (has links)
abstract: Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring approach is based on predicting crack damage state dynamics and modeling crack length observations. Since fatigue loading of a structural component can change while in service, an interacting multiple model technique is employed to estimate probabilities of different loading modes and incorporate this information in the crack length estimation problem. For the observation model, features are obtained from regions of high signal energy in the time-frequency plane and modeled for each crack length damage condition. Although this observation model approach exhibits high classification accuracy, the resolution characteristics can change depending upon the extent of the damage. Therefore, several different transmission waveforms and receiver sensors are considered to create multiple modes for making observations of crack damage. Resolution characteristics of the different observation modes are assessed using a predicted mean squared error criterion and observations are obtained using the predicted, optimal observation modes based on these characteristics. Calculation of the predicted mean square error metric can be computationally intensive, especially if performed in real time, and an approximation method is proposed. With this approach, the real time computational burden is decreased significantly and the number of possible observation modes can be increased. Using sensor measurements from real experiments, the overall sequential Bayesian estimation approach, with the adaptive capability of varying the state dynamics and observation modes, is demonstrated for tracking crack damage. / Dissertation/Thesis / Ph.D. Electrical Engineering 2013

Page generated in 0.0965 seconds