• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Space-time characterisation and adaptive processing of ionospherically-propagated HF signals / Giuseppe Aureliano Fabrizio.

Fabrizio, Giuseppe Aureliano January 2000 (has links)
Bibliography: p. 235-243. / xxvi, 243 p. : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Concerned with the mathematical characterisation and adaptive processing of narrowband high frequency signals received by a very wide aperture antenna array after reflection from the ionosphere. / Thesis (Ph.D.)--University of Adelaide, Dept. of Electrical and Electronic Engineering, 2000
2

Modelling, information capacity, and estimation of time-varying channels in mobile communication systems

Sadeghi, Parastoo, School of Electrical Engineering And Telecommunications, UNSW January 2006 (has links)
In the first part of this thesis, the information capacity of time-varying fading channels is analysed using finite-state Markov channel (FSMC) models. Both fading channel amplitude and fading channel phase are modelled as finite-state Markov processes. The effect of the number of fading channel gain partitions on the capacity is studied (from 2 to 128 partitions). It is observed that the FSMC capacity is saturated when the number of fading channel gain partitions is larger than 4 to 8 times the number of channel input levels. The rapid FSMC capacity saturation with a small number of fading channel gain partitions can be used for the design of computationally simple receivers, with a negligible loss in the capacity. Furthermore, the effect of fading channel memory order on the capacity is studied (from first- to fourth-order). It is observed that low-order FSMC models can provide higher capacity estimates for fading channels than high-order FSMC models, especially when channel states are poorly observable in the presence of channel noise. To explain the effect of memory order on the FSMC capacity, the capacities of high-order and low-order FSMC models are analytically compared. It is shown that the capacity difference is caused by two factors: 1) the channel entropy difference, and 2) the channel observability difference between the high-order and low-order FSMC models. Due to the existence of the second factor, the capacity of high-order FSMC models can be lower than the capacity of low-order FSMC models. Two sufficient conditions are proven to predict when the low-order FSMC capacity is higher or lower than the high-order FSMC capacity. In the second part of this thesis, a new implicit (blind) channel estimation method in time- varying fading channels is proposed. The information source emits bits ???0??? and ???1??? with unequal probabilities. The unbalanced source distribution is used as a priori known signal structure at the receiver for channel estimation. Compared to pilot-symbol-assisted channel estimation, the proposed channel estimation technique can achieve a superior receiver bit error rate performance, especially at low signal to noise ratio conditions.
3

Modelling, information capacity, and estimation of time-varying channels in mobile communication systems

Sadeghi, Parastoo, School of Electrical Engineering And Telecommunications, UNSW January 2006 (has links)
In the first part of this thesis, the information capacity of time-varying fading channels is analysed using finite-state Markov channel (FSMC) models. Both fading channel amplitude and fading channel phase are modelled as finite-state Markov processes. The effect of the number of fading channel gain partitions on the capacity is studied (from 2 to 128 partitions). It is observed that the FSMC capacity is saturated when the number of fading channel gain partitions is larger than 4 to 8 times the number of channel input levels. The rapid FSMC capacity saturation with a small number of fading channel gain partitions can be used for the design of computationally simple receivers, with a negligible loss in the capacity. Furthermore, the effect of fading channel memory order on the capacity is studied (from first- to fourth-order). It is observed that low-order FSMC models can provide higher capacity estimates for fading channels than high-order FSMC models, especially when channel states are poorly observable in the presence of channel noise. To explain the effect of memory order on the FSMC capacity, the capacities of high-order and low-order FSMC models are analytically compared. It is shown that the capacity difference is caused by two factors: 1) the channel entropy difference, and 2) the channel observability difference between the high-order and low-order FSMC models. Due to the existence of the second factor, the capacity of high-order FSMC models can be lower than the capacity of low-order FSMC models. Two sufficient conditions are proven to predict when the low-order FSMC capacity is higher or lower than the high-order FSMC capacity. In the second part of this thesis, a new implicit (blind) channel estimation method in time- varying fading channels is proposed. The information source emits bits ???0??? and ???1??? with unequal probabilities. The unbalanced source distribution is used as a priori known signal structure at the receiver for channel estimation. Compared to pilot-symbol-assisted channel estimation, the proposed channel estimation technique can achieve a superior receiver bit error rate performance, especially at low signal to noise ratio conditions.
4

Adaptive decomposition of signals into mono-components

Wang, Yan Bo January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Mathematics

Page generated in 0.1393 seconds