Spelling suggestions: "subject:"adenine anucleotides"" "subject:"adenine dinucleotides""
1 |
Organoplatinum(II) complexes with hydrogen-bonding functionality and their potential use as molecular receptors for adenine : a thesis submitted for the degree of Master of ScienceCrisp, Michael G. January 2002 (has links) (PDF)
Errata pasted onto front end-paper. Includes bibliographical references (leaves 82-86). Describes the preparation and characterisation of a novel series of organoplatinum(II) complexes with hydrogen-bonding functionality.
|
2 |
Organoplatinum(II) complexes with hydrogen-bonding functionality and their potential use as molecular receptors for adenine : a thesis submitted for the degree of Master of Science /Crisp, Michael G. January 2002 (has links) (PDF)
Thesis (M.Sc.)--University of Adelaide, Dept. of Chemistry, 2002. / Errata pasted onto front end-paper. Includes bibliographical references (leaves 82-86).
|
3 |
Inhibitation of succinate oxidation in beef heart mitochrondria by derivatives of pyridine adenine dinucleotideChao, Lian-Yu January 1970 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
|
4 |
Application of magnetic resonance for non-invasive phenotyping of mice with altered metabolismFaller, Kiterie Maud Edwige January 2011 (has links)
Changes in myocardial energetics have been implicated in the pathophysiology of heart failure (HF). However, the precise contribution of creatine (Cr) / phosphocreatine (PCr) / creatine kinase (CK) energy buffer and transfer remains unclear. The aim of this thesis was to study the effects on murine cardiac function of both impairment and enhancement of creatine metabolism. In order to longitudinally follow the cause and effect relationship of myocardial creatine concentration, a non-invasive method of quantification was required. Cardiac Cr levels measured in vivo by 1H-MRS were therefore compared with gold-standard invasive HPLC and found to correlate over a wide-range (r2=0.91). 1H-MRS was reproducible for measuring Cr levels in the heart, brain, and skeletal muscle. The cardiac phenotype of a novel model of creatine depletion, the AGAT-/- mouse, was characterized using in vivo MRI, 1H-MRS and LV catheterisation, under conditions of gradually reducing Cr concentrations; zero Cr; and attempted phenotype rescue with dietary Cr. For the first time in the heart, the rate of Cr turnover was quantified (~3 % per day) and demonstrated that cardiac function was preserved even when creatine levels reduced by ~70-90%. Total absence of myocardial Cr induced impairment of inotropic and lusitropic cardiac function and reduced inotropic reserve. Cardiac dysfunction was only partially rescued by replenishment of the Cr pool, suggesting this to be a consequence of long-term adaptations to chronic low Cr. Finally, we tested the hypothesis that combined elevation of myocardial creatine and ribose would be beneficial in a mouse model of chronic HF by increasing cardiac energy availability. Despite an increase in myocardial ribose concentration, this did not prevent loss of total adenine nucleotides (TAN), and there was no improvement in post-infarct LV remodeling or function. Future studies are needed to explore alternative approaches for maintaining TAN in combination with total creatine.
|
5 |
Effects of ribose supplementation on adenine nucleotide metabolism in human skeletal muscle during high-intensity exerciseGallagher, Philip M. January 2000 (has links)
During periods of intense exercise the adenine nucleotide pool in skeletal muscle becomes partially depleted. Ribose has been shown to increase rates of both purine salvage and adenine nucleotide de novo synthesis in rat skeletal muscle. However, to date no research has been conducted on the effects of ribose on adenine nucleotide levels in human skeletal muscle. Therefore, the purpose of this investigation was to determine the effects of ribose supplementation on adenine nucleotide levels in human skeletal muscle during high-intensity exercise. To do this, an 11-day supplementation of either ribose (20 g.d-1) or placebo (glucose 20 g•d-1) was given to 16 healthy male subjects. After 72 hours of supplementation, the subjects performed five-days of high-intensity exercise designed to elicit significant reductions in adenine nucleotides. A 65 hour recovery period was completed following the exercise protocol. Muscle biopsies were performed at four different time points during the supplementation/exercise period.The exercise protocol elicited significant decreases in skeletal muscle adenine nucleotide levels of both the ribose and placebo groups (p<0.05). However, ribose supplementation was shown to partially attenuated the adenine nucleotide decrease. The placebo group demonstrated a 39% decrease, while the ribose group dropped 23% in TAN levels (p<0.05). The largest decreases were observed in ATP for both groups; however, the decreases were significantly greater in the placebo group (p<0.05). Both groups displayed a similar amount of replenishment in adenine nucleotides 65 hours following the 5-day exercise period. No differences were demonstrated in ADP or AMP for either the ribose and placebo groups throughout the investigation. Both groups displayed an increase in E MP post-exercise, but the increase was only significant in the ribose group (p<0.05). No differences in mean power, peak power, and fatigue were observed between the ribose and placebo group. However, the ribose group consistently displayed a non-significantly greater percent change (3.1 %) in mean power. / School of Physical Education
|
6 |
HIF-1α in the Heart: Provision of Ischemic Cardioprotection and Remodeling of Nucleotide MetabolismWu, Joe 01 December 2014 (has links)
In our studies we found that stabilized expression of HIF-1α in heart led to better recovery of function and less tissue death after 30 minutes of global ischemia, via mechanisms that preserve the mitochondrial polarization. Our group previously showed that HIF-1α conferred ischemic tolerance by allowing cardiomyocytes to use fumarate as an alternative terminal electron acceptor to sustain anaerobic mitochondrial polarization. The source of fumarate was identified as the purine nucleotide cycle (PNC). Here we discovered that HIF-1α upregulates AMP deaminase 2 (AMPD2), the entry point to the PNC. The combination of glycolysis and the PNC may protect the heart's nucleotide resources. We subsequently examined the effects that HIF-1α exerts on nucleotide metabolism in the ischemic heart. We found that HIF-1α expression reduces adenosine accumulation in the ischemic heart. As ATP is depleted during ischemia, AMP accumulates. Our results suggest that AMP metabolism is shunted towards AMPD2 rather than the adenosine producing 5'-nucleotidase pathway. Subsequently, we treated hearts with the PNC inhibitor hadacidin followed by 30 minutes of global ischemia. Inclusion of hadacidin reduced ATP and adenylate energy charge in the hearts. These findings allow us to propose that activity of the PNC prevents the F0F1 ATP synthase from consuming glycolytic ATP in order to maintain mitochondrial polarization during ischemia. Thus, the PNC provides ATP sparing effects and preserves the energy charge in the ischemic heart. The fact that ATP and adenylate energy charge is better preserved during the initial 20 minutes of ischemia in HIF-1α expressing hearts is supportive of our observation that HIF-1α upregulates the PNC. HIF-1α also upregulates adenosine deaminase, which degrades adenosine. The limitation of adenosine accumulation may help HIF-1α expressing hearts avoid toxicity due to chronic adenosine exposure. Finally, we found that HIF-1α induces the expression of the nucleotide salvage enzyme hypoxanthine phosphoribosyl transferase (HPRT). Upon reperfusion HPRT serves to reincorporate the nucleotide degradation product, hypoxanthine, into the adenylate pool and may prevent the production of reactive oxygen species. Collectively, HIF-1α robustly protects the heart from ischemic stress and it upregulates several pathways whose cardioprotective role may extend beyond the remodeling of nucleotide metabolism.
|
7 |
Structural and functional studies of retinal guanylyl cyclase /Tucker, Chandra Lenore, January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves [78]-86).
|
8 |
cAMP shows an oscillatory pattern with odor preference conditioning in neonatal rats /Cui, Wen, January 2004 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2004. / Bibliography: leaves 85-110.
|
9 |
Effects of the Protein Phosphatase Inhibitors Okadaic Acid and Calyculin a on Metabolically Inhibited and Ischaemic Isolated MyocytesArmstrong, Stephen C., Ganote, Charles E. 01 January 1992 (has links)
Isolated adult rat myocytes were subjected to 180 min of metabolic inhibition or incubated in ischaemic pellets, in the presence and absence of 10 μm okadaic acid (OA) or calyculin A (CL-A). Contracture and viability was determined by light microscopic analysis of trypan blue-stained preparations and ATP levels by HPLC. Osmotic fragility was assessed by brief hypotonic swelling of cells in 170 or 85 mOsm media prior to determination of viability. Neither drug significantly affected the relatively rapid rates of contracture of myocytes during metabolic inhibition, and both afforded significant protection from development of trypan blue permeability and osmotic fragility. Both OA and CL-A significantly accelerated the rates of contracture and ATP depletion of myocytes during ischaemic incubations. Despite an enhanced rate of ATP depletion, which would be expected to accelerate development of injury, neither drug accelerated development of loss of viability or development of osmotic fragility as measured by 170 mOsm swelling. Mathematical compensation for different rates of ATP depletion confirmed that a protective effect of the drugs, during ischaemic incubation, was masked by their enhancement of the rate of injury, following swelling at 170 mOsm. When the effects of CL-A on ischaemic cells were examined at 85 mOsm, a more stringent test for osmotic fragility, protection was found without compensation for differing rates of ATP depletion. A dose/response curve for CL-A showed some effect at 100 nm and a nearly full effect during metabolic inhibition at 1 μm concentrations. It is concluded that protein phosphatase inhibitors reduce the rates of development of osmotic fragility of metabolically inhibited cells and reduces the rate of injury relative to the rate of ATP depletion of ischaemic cardiomyocytes. Phosphorylation mechanisms may be important to development of irreversible myocardial cell injury.
|
10 |
Regulation of the cardiac isoform of the ryanodine receptor by S-adenosyl-l-methionineGaboardi, Angela Kampfer 08 November 2011 (has links)
Activity of the Ryanodine Receptor (RyR2) (aka cardiac Ca2+ release channel) plays a pivotal role in contraction of the heart. S-adenosyl-l-methionine (SAM) is a biological methyl group donor that has close structural similarity to ATP, an important physiological regulator of RyR2. This work provides evidence that SAM can act as a RyR2 regulatory ligand in a manner independent from its recognized role as a biological methyl group donor. RyR2 activation appears to arise from the direct interaction of SAM, via its adenosyl moiety, with the RyR2 adenine nucleotide binding sites. Because uncertainty remains regarding the structural motifs involved in RyR2 modulation by ATP and its metabolites, this finding has important implications for clarifying the structural basis of ATP regulation of RyR2.
During the course of this project, direct measurements of single RyR2 activity revealed that SAM has distinct effects on RyR2 conductance. From the cytosolic side of the channel, SAM produced a single clearly resolved subconductance state. The effects of SAM on channel conductance were dependent on SAM concentration and membrane holding potential. A second goal of this work was to distinguish between the two possible mechanisms by which SAM could reduce RyR2 conductance: i) SAM interfering directly with ion permeation via binding within the conduction pathway (pore block), or ii) SAM binding a regulatory (or allosteric) site thereby stabilizing or inducing a reduced conductance conformation of the channel. It was determined that SAM does not directly interact with the RyR2 conduction pathway.
To account for these observations an allosteric model for the effect of SAM on RyR2 conductance is proposed. According to this model, SAM binding stabilizes an inherent RyR2 subconductance conformation. The voltage dependence of the SAM related subconductance state is accounted for by direct effects of voltage on channel conformation which indirectly alter the affinity of RyR2 for SAM. Patterns in the transitions between RyR2 conductance states in the presence of SAM may provide insight into the structure-activity relationship of RyR2 which can aid in the development of therapeutic strategies targeting this channel.
|
Page generated in 0.0779 seconds