Spelling suggestions: "subject:"denosine triphosphatases"" "subject:"denosine triphosphatase""
11 |
Isw2 complex slides nucleosomes to create repressive chromatin structure in vivo /Fazzio, Thomas G. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 110-128).
|
12 |
Levels of YCG1 Limit Condensin Function during the Cell Cycle: A DissertationDoughty, Tyler W. 10 August 2016 (has links)
For nearly five decades, the simple eukaryote Saccharomyces cerevisiae has been used as a model for understanding the eukaryotic cell cycle. One vein of this research has focused on understanding how chromosome structure is regulated in relation to the cell cycle. This work characterizes a new mechanism that modulates the chromatin organizing condensin complex, in hopes of furthering the understanding of chromosome structure regulation in eukaryotes.
During mitosis, chromosomes are condensed to facilitate their segregation through a process mediated by the condensin complex. Upon interphase onset, condensation is reversed, allowing for efficient transcription and replication of chromosomes. This work demonstrates that Ycg1, the Cap-G subunit of budding yeast condensin, is cell-cycle regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. The cyclical expression of Ycg1 is unique amongst condensin subunits, and is established by a combination of cell cycle-regulated transcription and constitutive proteasomal degradation. Interestingly, when cyclical expression of Ycg1 is disrupted, condensin formation and chromosome association increases, and cells exhibit a delay in cell-cycle entry. These results demonstrate that Ycg1 levels limit condensin function, and suggest that regulating the expression of an individual condensin subunit helps to coordinate chromosome conformation with the cell cycle. These data, along with recent corroborating results in Drosophila melanogaster suggest that condensin regulation through limiting the expression of a single condensin subunit may be broadly conserved amongst eukaryotes.
|
13 |
Analysis of motor activity of recombinant myosin-1cBiswas, Anindita. January 2007 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains xi, 82 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
|
14 |
X-ray crystal structures of yeast heat shock proteins and mitochondrial outer membrane translocon member Tom70pWu Yunkun. January 2007 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2007. / Title from PDF title page (viewed on Sept. 17, 2009). Includes bibliographical references.
|
15 |
Molecular mechanism of SV40 large tumor antigen helicase /Tokonzaba, Etienne. January 2007 (has links)
Thesis (Ph.D. in Pharmacology) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 82-92; 128-134). Online version available via ProQuest Digital Dissertations.
|
16 |
A Novel SMC-Like Protein Modulates C. Elegans Condensin Functions: A DissertationChao, Lucy F. 25 March 2016 (has links)
Chromatin is organized dynamically to accommodate different biological processes. One of the factors required for proper chromatin organization is a group of complexes called condensins. Most eukaryotes have two conserved condensins (I and II) required for chromosome segregation. C. elegans has a third condensin (IDC) that specializes in dosage compensation, a process that down-regulates X gene dosage in XX hermaphrodites to match the dosage in XO males. How the three condensins are regulated is not well understood. Here, I present the discovery and characterization of a novel condensin regulator, SMCL-1.
We identified SMCL-1 through purification of a MAP-tagged condensin subunit. Condensins are comprised of SMC ATPases and regulatory CAP proteins; SMCL-1 interacts most abundantly with condensin SMC subunits and resembles the ATPase domain of SMC proteins. Interestingly, the SMCL-1 protein has residues that differ from SMC consensus and potentially render SMCL-1 incapable of hydrolyzing ATP. Worms harboring smcl-1 deletion are viable and show no detectable phenotype. However, deleting smcl-1 in a condensin hypomorph mildly suppresses condensin I and IDC mutant phenotypes, suggesting that SMCL-1 functions as a negative regulator of condensin I and IDC. Consistent with this, overexpression of SMCL-1 leads to condensin loss-of-function phenotypes such as lethality, segregation defects and disruption of IDC localization on the X chromosomes. Homology searches based on the unique ATPase domain of SMCL-1 reveal that SMCL-1-like proteins are present only in organisms also predicted to have condensin IDC. Taken together, we conclude that SMCL-1 is a negative modulator of condensin functions and we propose a role for SMCL-1 in helping organisms adapt to having a third condensin by maintaining the balance among three condensin complexes.
|
Page generated in 0.0446 seconds