• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protein Recovery from Secondary Paper Sludge and Its Potential Use as Wood Adhesive

Pervaiz, Muhammad 19 December 2012 (has links)
Secondary sludge is an essential part of biosolids produced through the waste treatment plant of paper mills. Globally paper mills generate around 3.0 million ton of biosolids and in the absence of beneficial applications, the handling and disposal of this residual biomass poses a serious environmental and economic proposition. Secondary paper sludges were investigated in this work for recovery of proteins and their use as wood adhesive. After identifying extracellular polymeric substances as adhesion pre-cursors through analytical techniques, studies were carried out to optimize protein recovery from SS and its comprehensive characterization. A modified physicochemical protocol was developed to recover protein from secondary sludge in substantial quantities. The combined effect of French press and sonication techniques followed by alkali treatment resulted in significant improvement of 44% in the yield of solubilized protein compared to chemical methods. The characterization studies confirmed the presence of common amino acids in recovered sludge protein in significant quantities and heavy metal concentration was reduced after recovery process. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed the presence of both low and high molecular weight protein fractions in recovered sludge protein. After establishing the proof-of-concept in the use of recovered sludge protein as wood adhesive, the bonding mechanism of protein adhesives with cellulose substrate was further elucidated in a complementary protein-modification study involving soy protein isolate and its glycinin fractions. The results of this study validated the prevailing bonding theories by proving that surface wetting, protein structure, and type of wood play important role in determining final adhesive strength. Recovered sludge protein was also investigated for its compatibility to formulate hybrid adhesive blends with formaldehyde and bio-based polymers. Apart from chemical cross-linking, the synergy of adhesive blends was evaluated through classical rule-of-mixture. The findings of this study warrants further investigation concerning other potential uses of recovered sludge protein, especially as food supplements and economic implications.
2

Protein Recovery from Secondary Paper Sludge and Its Potential Use as Wood Adhesive

Pervaiz, Muhammad 19 December 2012 (has links)
Secondary sludge is an essential part of biosolids produced through the waste treatment plant of paper mills. Globally paper mills generate around 3.0 million ton of biosolids and in the absence of beneficial applications, the handling and disposal of this residual biomass poses a serious environmental and economic proposition. Secondary paper sludges were investigated in this work for recovery of proteins and their use as wood adhesive. After identifying extracellular polymeric substances as adhesion pre-cursors through analytical techniques, studies were carried out to optimize protein recovery from SS and its comprehensive characterization. A modified physicochemical protocol was developed to recover protein from secondary sludge in substantial quantities. The combined effect of French press and sonication techniques followed by alkali treatment resulted in significant improvement of 44% in the yield of solubilized protein compared to chemical methods. The characterization studies confirmed the presence of common amino acids in recovered sludge protein in significant quantities and heavy metal concentration was reduced after recovery process. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed the presence of both low and high molecular weight protein fractions in recovered sludge protein. After establishing the proof-of-concept in the use of recovered sludge protein as wood adhesive, the bonding mechanism of protein adhesives with cellulose substrate was further elucidated in a complementary protein-modification study involving soy protein isolate and its glycinin fractions. The results of this study validated the prevailing bonding theories by proving that surface wetting, protein structure, and type of wood play important role in determining final adhesive strength. Recovered sludge protein was also investigated for its compatibility to formulate hybrid adhesive blends with formaldehyde and bio-based polymers. Apart from chemical cross-linking, the synergy of adhesive blends was evaluated through classical rule-of-mixture. The findings of this study warrants further investigation concerning other potential uses of recovered sludge protein, especially as food supplements and economic implications.
3

Biomaterial Functionalized Surfaces for Reducing Bacterial Adhesion and Infection

Katsikogianni, Maria G., Wood, David J., Missirlis, Y.F. January 2016 (has links)
No / This chapter describes the current approaches to reduce bacterial adhesion to various biomaterial surfaces, focusing on nonfouling surfaces through patterning and hydrophobicity plasma-assisted surface treatment and deposition; incorporation of antimicrobials, antibiotics, antibiofilms, and natural extracts that are either immobilized or released; dual function antimicrobial surfaces; incorporation of nonpathogenic bacteria, bacteriophages, and biofilm dispersal agents but also reduced bacterial adhesion through tissue integration. To facilitate the design of new materials, the role of physical, chemical, and biological surface properties on bacterial adhesion is reviewed in each case, as an insight into the chemical and physical cues that affect bacterial adhesion and biofilm formation can provide ideas for creating successful antifouling or antimicrobial surfaces. The application of these surfaces is explored based on the clinical needs and the market gaps. How multidisciplinary research on surface design and engineering may have an impact on both fundamental understanding of bacterial adhesion to biomaterials and applied biomaterial science and technology is finally discussed.

Page generated in 0.069 seconds