• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 11
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adhesive wear testing and modelling of tool steels sliding against sheet metals

W. Lindvall, Fredrik January 2014 (has links)
Sheet metal forming is a manufacturing method used because of its versatility. Sheets are plastically deformed by a tool to create a product. A tool is expected to last for several 100,000 forming operations and efforts are made to optimize the tools. A common type of wear referred to as galling is the adhesion of sheet material to the tools. This problem has become more prevalent as new high strength sheet materials have been developed at the same time as lubricants have become heavily regulated. This has forced the development of new tool steels with improved resistance to galling. There are many parameters influencing the response to galling. In this work the influence of surface preparation, contact geometry, material selection and lubrication has been investigated. The surface of the forming tools has a large influence on the tools effective life. To refurbish a forming tool is expensive and often requires special shops and hand polishing. The influence on galling of different surface preparations suited for sheet metal forming was investigated using a strip-reduction equipment. The contact conditions of a tool sliding against metal sheets were investigated using FE models. The contact conditions were calculated for a U-bending test and for a sliding-on-flat-surface wear tester. The results were compared to those found in literature. One model incorporated the surface roughness of a sheet as measured by optical profilometry. The strength of the interface between the tool and the sheet material determine if material can be transferred onto the tool. The interface between the tool and adhered sheet material was closely studied using transmission electron microscopy of thin lamellas produced by focused ion beam milling. This showed sheet material adhering to the tool without the formation of an interlayer. Finally, several different combinations of tool steels and sheet materials were tested with regards to their ability to withstand galling. / Baksidestext: Sheet metal forming can be used to produce a wide range of products but the initial costs are high as the forming tools are expensive. Wear of the tools in the form of galling i.e. the adhesion of tiny pieces of sheet material to the tools has become more prevalent as high strength sheet materials have been developed and lubricants have become heavily regulated. In this work the influence on galling of surface preparation, contact geometry, material selection and lubrication has been investigated. It was found that tool surfaces should be polished as rougher surfaces quickly picked up material that adhered to the tools and subsequently scratched the sheets. The strength of the interface between the tool and the sheet material determine if material can be transferred onto the tool. The interface was studied using bright field transmission electron microscopy and the sheet material was found to adhere to the tool without the formation of an interlayer. The conditions under which galling occurs were studied using a slider on flat surface wear tester and several different material combinations were tested with regards to their galling resistance. The contact conditions of the test equipment were also modeled using FE models to better understand the strains of the materials involved.
2

Renovace kluzných ploch / Repair of surface sliding

Teplý, Miroslav January 2013 (has links)
The selection of suitable materials for the renovation of sliding shafts requires a comparison of several criteria. The main criteria were selected size shear strength under tensile stress lap bonded assemblies, resistance to adhesive wear and economic criteria. From the results of all tests is selected the most suitable friction material to repair worn out places of shaft. The technological process of sealing the shaft was drawn up on the basis of the literature, recommendations supplier of sliding materials and their own experience.
3

Produção e caracterização de camadas de boretos e carbonetos nos aços AISI 8620, 15B30, 8640 e 52100 / Production and characterization of boride and carbide layers on AISI 8620, 15B30, 8640 and 52100 steels

Triani, Rafael Magalhães 11 July 2018 (has links)
Os aços AISI 8620, 15B30, 8640 e 52100 são amplamente usados como componentes em rolamentos, engrenagens, pistões e discos de arado, estando sujeitos a constante contato relativo e, consequentemente, sobre diferentes formas de desgaste tribológico. O uso de tratamentos que produzam camadas duras e resistente ao desgaste podem aumentar significativamente o tempo em uso e reduzir custos operacionais. Neste trabalho, tais aços, foram submetidos a tratamentos de Boretação e Deposição termorreativa (TRD) e caracterizados por meio de ensaios de dureza, desgaste microadesivo e difração de raios - X. A dureza das camadas foram determinadas, ocorrendo aumento dessa propriedade para valores de 1650 a 1750 HK0.2 e 2000 a 2400 HK0.2 respectivamente para as camadas de boretos e carbonetos, já em relação ao desgaste microadesivo, as camadas de boretos, VC e NbC formadas apresentaram maior resistência ao desgaste quando comparadas aos seus respectivos substratos protegidos. / The AISI 8620, 15B30, 8640 and 52100 steels are widely used as components in bearings, gears, pistons and plow discs, being subject to constant relative contact and, consequently, to different forms of tribological wear. The use of treatments that produce hard layers and wear resistant can significantly increase the time in use and reduce operating costs. In this work, these steels were submitted to Boride and Thermorreative Deposition (TRD) treatments and characterized by tests of hardness, microadhesive wear and X - ray diffraction. The hardness of the layers was determined, increasing this property to values of 1650 to 1750 HK0.2 and 2000 to 2400 HK0.2 respectively for the layers of borides and carbides, already in relation to the microadhesive wear, the boride layers, VC and NbC formed presented higher resistance to wear when compared to their respective protected substrates.
4

Caracterização do desgaste em punção de forjamento a quente em prensa horizontal automática de múltiplos estágios. / Characterization of hot forging punch wear used in multi-stage mechanical horizontal automatic press.

Pereira, Marcio Henrique 10 April 2017 (has links)
Concebido há milhares de anos, o forjamento passa por melhorias contínuas, mantendo-se como um processo de fabricação moderno, capaz de agregar características importantes a produtos forjados que são utilizados em inúmeras aplicações. Na indústria automobilística, responsável pelo consumo de cerca de 60% de todos os produtos forjados, o forjamento mostrou-se como um processo de conformação plástica eficaz no atendimento das especificações de resistência mecânica e nos quesitos de produtividade. Esta demanda por produtos forjados estimulou a busca por processos mais robustos, nos quais as ferramentas de forjamento possuem papel fundamental para possibilitar a produção de lotes maiores sem paradas de máquina devido a falhas. Cerca de 70% das falhas estão relacionadas ao desgaste das ferramentas. Este trabalho buscou identificar no ambiente industrial, os modos de desgaste responsáveis pela degradação da superfície de contato de um punção, fabricado em aço H-10. Um conjunto de punções foi utilizado no forjamento a quente em prensa mecânica excêntrica horizontal e automática de múltiplos estágios, que utiliza água na refrigeração das ferramentas, durante a fabricação de porcas de roda, em aço SAE 1045. Os resultados obtidos basearam-se: (i) nas análises da superfície e da seção transversal de seis punções em microscópio eletrônico de varredura, (ii) na análise da nanodureza e (iii) na variação dimensional e da massa dos punções. Os resultados apontaram para o desgaste da superfície dos punções logo nas primeiras peças forjadas devido à transferência de óxidos do blank para a superfície da ferramenta. Nesta camada transferida para a superfície dos punções, foram encontrados danos causados pelo desgaste abrasivo e pela fadiga térmica. / Since the initial development, thousands of years ago, forging has faced continuous improvements, remaining as a modern manufacturing process, capable of adding important characteristics to forged products that are used in numerous applications. In the automotive industry, responsible for the consumption of approximately 60% of all forged products, the forging has proved to be an effective metal forming process in terms of mechanical strength specifications and productivity requirements. This demand for forged parts has stimulated the search for more robust processes in which the forging tool has a fundamental role to enable the production of larger batches without downtime due to failures. Approximately 70% of these failures are related to tool wear. This work aimed identifying, in an industrial environmental, the wear modes responsible for the degradation of the contact surface of a punch, made of H-10 steel. A series of punches was used for hot forging in a horizontal and automatic multi-stage eccentric mechanical press which uses water for tool cooling, during the manufacture of wheel nuts, made of SAE 1045 steel. Results were based: (i) on the analysis of the surface and cross section of six punches in a scanning electronic microscope, (ii) on nanohardness analyses and (iii) as well as on mass and dimensional variations. Results pointed to the punch wear in the first forged pieces, due to oxides transferring from blank to the punch surface. On this transferred layer to punch surface, have also found damage caused by abrasive wear and thermal fatigue.
5

Tratamentos térmicos e termoquímicos de boroaustêmpera em ferros fundidos nodulares e caracterização dos produtos resultantes / Boro-austempered thermal and thermochemical treatments in ductile cast iron and characterization of resulting products

Mariani, Fábio Edson 07 July 2014 (has links)
Amostras de ferros fundidos nodulares ligados com Cu, Cu-Ni ou Cu-Ni-Mo foram austemperadas, boretadas e boroaustemperadas e caracterizadas quanto à dureza e o comportamento ao desgaste microadesivo, tendo sido também estudada a cinética de formação da camada. O método de boretação utilizado foi via líquida em banho de bórax fundido, com tempos de permanência de 2 e 4 horas nas temperaturas de 850, 900 e 950ºC. Procedeu-se o tratamento direto de austêmpera, a partir dessa temperatura, em banhos de sal fundidos nas temperaturas de 240, 300 e 360ºC com tempos de permanência de 4 horas (boroaustêmpera). Realizou-se também, para fins de comparação, tratamento convencional de austêmpera. Microscopias óptica e eletrônica de varredura, EDS por raios-X, testes de dureza Brinell (substrato) e Vickers (revestimento) foram realizados, bem como ensaios de desgaste microadesivo do tipo esfera presa. A boretação resultou na formação de camadas de elevadas durezas, na faixa de 1300 a 1700 HV, e elevadas resistências ao desgaste. As resistências ao desgaste das amostras boretadas ou boroaustemperadas foram aumentadas em até 40x em relação às amostras brutas de fundição ou apenas austemperadas, indicando a grande eficácia do tratamento neste tipo de propriedade. / Samples of ductile cast iron alloyed with Cu, Cu-Ni or Cu-Ni-Mo were austempered, borided and boroaustempered and afterwards characterized for hardness and micro-adhesive wear behavior. The kinetics of layer formation were also studied. The boriding method used was liquid molten borax bath, in periods of 2 and 4 hours at temperatures of 850, 900 and 950°C. The direct austempering treatment was performed from the borax bath temperature using molten salt baths at temperatures of 240, 300 and 360°C for 4 hours (boroaustempered). For comparative purposes, the conventional austempering treatment was also conducted. Optical microscopy, scanning electron microscopy, EDX, Brinell hardness measurements (substrate) and Vickers (coating) were performed, as were the tests for micro-adhesive wear. The boriding treatment resulted in the formation of layers with high hardness, in the range of 1300 to 1700 HV and high wear resistance. The wear resistance of borided or boroaustempered samples were increased by 40 times when compared to cast irons or austempered samples, indicating the high efficiency of this type of treatment in increasing the wear resistance of this material.
6

The Characterization of TiC and Ti(C,N) Based Cermets with and without Mo2C

Stewart, Tyler 24 February 2014 (has links)
Titanium carbide (TiC) and titanium carbonitride (Ti(C,N)) are both common components in hard, wear resistant ceramic-metal composites, or cermets. In this study the intermetallic nickel aluminide (Ni3Al) has been used as a binder for the production of TiC and Ti(C,N) based cermets. These cermets offer several improved characteristics relative to conventional WC-based ‘hardmetals’, such as lower mass and improved oxidation resistance, which are also combined with high fracture resistance, hardness and wear resistance. The cermets were produced using an in-situ, reaction sintering procedure to form the stoichiometric Ni3Al binder, with the binder contents varied from 20 to 40 vol%. However, for high N content Ti(C,N) cermets, the wettability of molten Ni3Al is relatively poor, which leads to materials with residual porosity. Therefore various amounts of Mo2C (1.25, 2.5, 5 and 10 vol%) were incorporated into the Ti(C0.3,N0.7)-Ni3Al cermets, with the aim of improving the densification behaviour. Mo2C was found to improve upon the wettability during sintering, thus enhancing the densification, especially at the lower binder contents. The tribological behaviour of TiC and Ti(C,N) cermets have been evaluated under reciprocating sliding conditions. The wear tests were conducted using a ball-on-flat sliding geometry, with a WC-Co sphere as the counter-face material, for loads from 20 to 60 N. The wear response was characterised using a combination of scanning electron microscopy, energy dispersive X-ray spectroscopy, and focused ion beam microscopy. Initially, two-body abrasive wear was observed to occur, which transitions to three-body abrasion through the generation of debris from the cermet and counter-face materials. Ultimately, this wear debris is incorporated into a thin tribolayer within the wear track, which indicates a further transition to an adhesive wear mechanism. It was found that Mo2C additions had a positive effect on both the hardness and indentation fracture resistance of the samples, but had a detrimental effect on the sliding wear response of the cermets. This behaviour was attributed to increased microstructural inhomogeneity with Mo2C additions.
7

RECIPROCATING WEAR RESPONSE OF Ti(C,N)-Ni3Al CERMETS

Buchholz, Stephen 05 December 2011 (has links)
Titanium carbonitride (Ti(C,N)) cermets have become more popular in recent research due to their mix of high hardness, high hot hardness, good ductility, chemical stability, and low densities. These mechanical properties make Ti(C,N)-cermets especially desirable as a replacement for current ‘hardmetals’, such as tungsten carbide cobalt (WCCo), as it is known that WC-Co exhibits poor mechanical behaviour at elevated temperatures. Additional interest and research has been conducted in reference to binders which enhance the cermet’s capability to retain strength at high temperatures while remaining ductile. One such binder, Ni3Al actually increases in yield strength up to a temperature of ~900°C. In this thesis, the production method utilizing melt infiltration for TiC, Ti(C0.7,N0.3), Ti(C0.5,N0.5), and Ti(C0.3,N0.7)-based cermets with Ni3Al binder contents of 20, 30 and 40 vol. % have successfully been developed and utilized. This process produced high density samples at each nitrogen content for all binder contents, excluding Ti(C0.3,N0.7). Ti(C0.3,N0.7)-Ni3Al samples at 20 and 30 vol. % suffered from poor infiltration and could not be tested. The reciprocating wear mechanisms were examined, using a ball-on-flat test, utilizing WC-Co spheres with a diameter of 6.35 mm as a counter-face, and test parameters of 20 Hz, 2 hrs., and applied loads of 20, 40, 60 and 80 N. The wear tracks were examined using optical profilometry, SEM, and EDS to determine the volumetric wear rate, and the dominant wear mechanisms. The wear volume, and wear mechanisms were compared with the effect of binder content, nitrogen content, and applied load.
8

Caracterização do desgaste em punção de forjamento a quente em prensa horizontal automática de múltiplos estágios. / Characterization of hot forging punch wear used in multi-stage mechanical horizontal automatic press.

Marcio Henrique Pereira 10 April 2017 (has links)
Concebido há milhares de anos, o forjamento passa por melhorias contínuas, mantendo-se como um processo de fabricação moderno, capaz de agregar características importantes a produtos forjados que são utilizados em inúmeras aplicações. Na indústria automobilística, responsável pelo consumo de cerca de 60% de todos os produtos forjados, o forjamento mostrou-se como um processo de conformação plástica eficaz no atendimento das especificações de resistência mecânica e nos quesitos de produtividade. Esta demanda por produtos forjados estimulou a busca por processos mais robustos, nos quais as ferramentas de forjamento possuem papel fundamental para possibilitar a produção de lotes maiores sem paradas de máquina devido a falhas. Cerca de 70% das falhas estão relacionadas ao desgaste das ferramentas. Este trabalho buscou identificar no ambiente industrial, os modos de desgaste responsáveis pela degradação da superfície de contato de um punção, fabricado em aço H-10. Um conjunto de punções foi utilizado no forjamento a quente em prensa mecânica excêntrica horizontal e automática de múltiplos estágios, que utiliza água na refrigeração das ferramentas, durante a fabricação de porcas de roda, em aço SAE 1045. Os resultados obtidos basearam-se: (i) nas análises da superfície e da seção transversal de seis punções em microscópio eletrônico de varredura, (ii) na análise da nanodureza e (iii) na variação dimensional e da massa dos punções. Os resultados apontaram para o desgaste da superfície dos punções logo nas primeiras peças forjadas devido à transferência de óxidos do blank para a superfície da ferramenta. Nesta camada transferida para a superfície dos punções, foram encontrados danos causados pelo desgaste abrasivo e pela fadiga térmica. / Since the initial development, thousands of years ago, forging has faced continuous improvements, remaining as a modern manufacturing process, capable of adding important characteristics to forged products that are used in numerous applications. In the automotive industry, responsible for the consumption of approximately 60% of all forged products, the forging has proved to be an effective metal forming process in terms of mechanical strength specifications and productivity requirements. This demand for forged parts has stimulated the search for more robust processes in which the forging tool has a fundamental role to enable the production of larger batches without downtime due to failures. Approximately 70% of these failures are related to tool wear. This work aimed identifying, in an industrial environmental, the wear modes responsible for the degradation of the contact surface of a punch, made of H-10 steel. A series of punches was used for hot forging in a horizontal and automatic multi-stage eccentric mechanical press which uses water for tool cooling, during the manufacture of wheel nuts, made of SAE 1045 steel. Results were based: (i) on the analysis of the surface and cross section of six punches in a scanning electronic microscope, (ii) on nanohardness analyses and (iii) as well as on mass and dimensional variations. Results pointed to the punch wear in the first forged pieces, due to oxides transferring from blank to the punch surface. On this transferred layer to punch surface, have also found damage caused by abrasive wear and thermal fatigue.
9

Tratamentos térmicos e termoquímicos de boroaustêmpera em ferros fundidos nodulares e caracterização dos produtos resultantes / Boro-austempered thermal and thermochemical treatments in ductile cast iron and characterization of resulting products

Fábio Edson Mariani 07 July 2014 (has links)
Amostras de ferros fundidos nodulares ligados com Cu, Cu-Ni ou Cu-Ni-Mo foram austemperadas, boretadas e boroaustemperadas e caracterizadas quanto à dureza e o comportamento ao desgaste microadesivo, tendo sido também estudada a cinética de formação da camada. O método de boretação utilizado foi via líquida em banho de bórax fundido, com tempos de permanência de 2 e 4 horas nas temperaturas de 850, 900 e 950ºC. Procedeu-se o tratamento direto de austêmpera, a partir dessa temperatura, em banhos de sal fundidos nas temperaturas de 240, 300 e 360ºC com tempos de permanência de 4 horas (boroaustêmpera). Realizou-se também, para fins de comparação, tratamento convencional de austêmpera. Microscopias óptica e eletrônica de varredura, EDS por raios-X, testes de dureza Brinell (substrato) e Vickers (revestimento) foram realizados, bem como ensaios de desgaste microadesivo do tipo esfera presa. A boretação resultou na formação de camadas de elevadas durezas, na faixa de 1300 a 1700 HV, e elevadas resistências ao desgaste. As resistências ao desgaste das amostras boretadas ou boroaustemperadas foram aumentadas em até 40x em relação às amostras brutas de fundição ou apenas austemperadas, indicando a grande eficácia do tratamento neste tipo de propriedade. / Samples of ductile cast iron alloyed with Cu, Cu-Ni or Cu-Ni-Mo were austempered, borided and boroaustempered and afterwards characterized for hardness and micro-adhesive wear behavior. The kinetics of layer formation were also studied. The boriding method used was liquid molten borax bath, in periods of 2 and 4 hours at temperatures of 850, 900 and 950°C. The direct austempering treatment was performed from the borax bath temperature using molten salt baths at temperatures of 240, 300 and 360°C for 4 hours (boroaustempered). For comparative purposes, the conventional austempering treatment was also conducted. Optical microscopy, scanning electron microscopy, EDX, Brinell hardness measurements (substrate) and Vickers (coating) were performed, as were the tests for micro-adhesive wear. The boriding treatment resulted in the formation of layers with high hardness, in the range of 1300 to 1700 HV and high wear resistance. The wear resistance of borided or boroaustempered samples were increased by 40 times when compared to cast irons or austempered samples, indicating the high efficiency of this type of treatment in increasing the wear resistance of this material.
10

Tribological characteristics of coatings on aluminium and its alloys

Abdul-Mahdi, F. S. January 1987 (has links)
Hard anodising on aluminium and its alloys has been widely practised for many years in order to improve the resistance of the otherwise poor wear characteristics of aluminium. In recent years there has been an increasing interest in other treatments and coatings, on both aluminium and other base metals. The aim of this investigation is to explain the tribological performance and wear mechanism(s) of an uncoated aluminium alloy, four anodic coated alloys, and also an electroless nickel alloy. All of the coatings are produced on three different aluminium alloys. The thickness of the anodic films is 30-35 micron, as this thickness falls within the range commonly used by industry. In an endeavour to explain the role of coating thickness on wear life, electroless nickel alloy has been produced in a range of thicknesses of 10, 20 and 30 micron. To evaluate abrasive and adhesive wear, the samples were rubbed against a single point diamond and steel ball, respectively, in a reciprocating movement at room temperature and 65-75% relative humidity, under a wide range of load and sliding distance. Some tests continued to run until a breakdown of the coatings occurred, whilst other tests were interrupted at intermediate stages. This enabled the initiation and propagation of failure mechanisms to be studied. Abrasive wear was performed under dry conditions, whereas, adhesive wear was evaluated under both dry and lubricated conditions. Wear of these coatings was proportional to the applied load and sliding distance, but there was no direct relationship between wear and hardness. The tribological performance of these coatings appears to be dictated by a) the composition of the substrate, b) the chemical and physical nature of the coatings and c) the test conditions. Under boundary lubricated conditions there was a considerable increase in the wear life of the coatings. A three dimensional surface texture is superior to a machined surface, in controlling contact conditions. There is an approximate linear relationship between coating thickness and wear life for electroless nickel alloys. These coatings predominantly fail by adhesion, plastic deformation and brittle fracture. A microscopic model for fracture of brittle materials, under both static and dynamic conditions for abrasive and adhesive wear correlates very well with the behaviour of these coatings. Analytical interpretation of adhesive wear was made by separately calculating the coefficient of wear "K" of the counterbodies. This information enables an improved understanding of the wear test itself to be added to the model of the wear mechanisms involved.

Page generated in 0.0591 seconds