• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discovery of Possible Paleotsunami Deposits in Pangandaran and Adipala, Java, Indonesia Using Grain Size, XRD, and <sup>14</sup>C Analyses

Stuart, Kevin L. 01 March 2018 (has links)
Grain size, 14C age, and X-ray diffraction (XRD) analyses of sediments indicate possible tsunami deposits on the southern coast of Java near Pangandaran and Adipala. Previous studies that have described known recent and paleotsunami deposits were used for comparison. Fining-upward grain size trends, interbedded sand and mud, sediment composition, and trends in heavy mineral abundances are among the characteristics used for tsunami deposit identification. At Batu Kalde, an archaeological site south of Pangandaran, a layer of aragonitic sand with marine fossils was found atop a layer of archaeological fragments at an elevation of ~2-5 m. It is likely this layer was deposited by a tsunami, potentially generated by a mega-thrust earthquake. Archaeological material remains suggest that the tsunami occurred ~1300 years ago. A bivalve with an age of 5584-5456 cal YBP was buried within the deposit, perhaps long after its death. At Goa Panggung, a cave east of Batu Kalde, fining-upward grain size trends, composition of sediments, and radiocarbon ages suggest the presence of at least one tsunami deposit. A 5040-4864 cal YBP piece of charcoal overlying modern organic matter suggest that the tsunami first scoured the cave floor, reworking existing material and making interpretation difficult. At Adipala, in western Central Java, fining-upward grain size, upward decrease in heavy mineral abundances, and lateral continuity of sand layers revealed the existence of two possible tsunami deposits buried within the sediments in a swale ~1.6 km from the ocean. Age of the deposits is undetermined.

Page generated in 0.0349 seconds