• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of microparticle to system level phenomena in thermally activated adsorption heat pumps

Raymond, Alexander William 20 May 2010 (has links)
Heat actuated adsorption heat pumps offer the opportunity to improve overall energy efficiency in waste heat applications by eliminating shaft work requirements accompanying vapor compression cycles. The coefficient of performance (COP) in adsorption heat pumps is generally low. The objective of this thesis is to model the adsorption system to gain critical insight into how its performance can be improved. Because adsorption heat pumps are intermittent devices, which induce cooling by adsorbing refrigerant in a sorption bed heat/mass exchanger, transient models must be used to predict performance. In this thesis, such models are developed at the adsorbent particle level, heat/mass exchanger component level and system level. Adsorption heat pump modeling is a coupled heat and mass transfer problem. Intra-particle mass transfer resistance and sorption bed heat transfer resistance are shown to be significant, but for very fine particle sizes, inter-particle resistance may also be important. The diameter of the adsorbent particle in a packed bed is optimized to balance inter- and intra-particle resistances and improve sorption rate. In the literature, the linear driving force (LDF) approximation for intra-particle mass transfer is commonly used in place of the Fickian diffusion equation to reduce computation time; however, it is shown that the error in uptake prediction associated with the LDF depends on the working pair, half-cycle time, adsorbent particle radius, and operating temperatures at hand. Different methods for enhancing sorption bed heat/mass transfer have been proposed in the literature including the use of binders, adsorbent compacting, and complex extended surface geometries. To maintain high reliability, the simple, robust annular-finned-tube geometry with packed adsorbent is specified in this work. The effects of tube diameter, fin pitch and fin height on thermal conductance, metal/adsorbent mass ratio and COP are studied. As one might expect, many closely spaced fins, or high fin density, yields high thermal conductance; however, it is found that the increased inert metal mass associated with the high fin density diminishes COP. It is also found that thin adsorbent layers with low effective conduction resistance lead to high thermal conductance. As adsorbent layer thickness decreases, the relative importance of tube-side convective resistance rises, so mini-channel sized tubes are used. After selecting the proper tube geometry, an overall thermal conductance is calculated for use in a lumped-parameter sorption bed simulation. To evaluate the accuracy of the lumped-parameter approach, a distributed parameter sorption bed simulation is developed for comparison. Using the finite difference method, the distributed parameter model is used to track temperature and refrigerant distributions in the finned tube and adsorbent layer. The distributed-parameter tube model is shown to be in agreement with the lumped-parameter model, thus independently verifying the overall UA calculation and the lumped-parameter sorption bed model. After evaluating the accuracy of the lumped-parameter model, it is used to develop a system-level heat pump simulation. This simulation is used to investigate a non-recuperative two-bed heat pump containing activated carbon fiber-ethanol and silica gel-water working pairs. The two-bed configuration is investigated because it yields a desirable compromise between the number of components (heat exchangers, pumps, valves, etc.) and steady cooling rate. For non-recuperative two-bed adsorption heat pumps, the average COP prediction in the literature is 0.39 for experiments and 0.44 for models. It is important to improve the COP in mobile waste heat applications because without high COP, the available waste heat during startup or idle may be insufficient to deliver the desired cooling duty. In this thesis, a COP of 0.53 is predicted for the non-recuperative, silica gel-water chiller. If thermal energy recovery is incorporated into the cycle, a COP as high as 0.64 is predicted for a 90, 35 and 7.0°C source, ambient and average evaporator temperature, respectively. The improvement in COP over heat pumps appearing in the literature is attributed to the adsorbent particle size optimization and careful selection of sorption bed heat exchanger geometry.

Page generated in 0.126 seconds