Spelling suggestions: "subject:"actionreflection"" "subject:"decision:reflection""
1 |
Quasi second-order methods for PDE-constrained forward and inverse problemsZehnder, Jonas 05 1900 (has links)
La conception assistée par ordinateur (CAO), les effets visuels, la robotique et de nombreux autres domaines tels que la biologie computationnelle, le génie aérospatial, etc. reposent sur la résolution de problèmes mathématiques. Dans la plupart des cas, des méthodes de calcul sont utilisées pour résoudre ces problèmes. Le choix et la construction de la méthode de calcul ont un impact important sur les résultats et l'efficacité du calcul. La structure du problème peut être utilisée pour créer des méthodes, qui sont plus rapides et produisent des résultats qualitativement meilleurs que les méthodes qui n'utilisent pas la structure. Cette thèse présente trois articles avec trois nouvelles méthodes de calcul s'attaquant à des problèmes de simulation et d'optimisation contraints par des équations aux dérivées partielles (EDP).
Dans le premier article, nous abordons le problème de la dissipation d'énergie des solveurs fluides courants dans les effets visuels. Les solveurs de fluides sont omniprésents dans la création d'effets dans les courts et longs métrages d'animation. Nous présentons un schéma d'intégration temporelle pour la dynamique des fluides incompressibles qui préserve mieux l'énergie comparé aux nombreuses méthodes précédentes. La méthode présentée présente une faible surcharge et peut être intégrée à un large éventail de méthodes existantes. L'amélioration de la conservation de l'énergie permet la création d'animations nettement plus dynamiques.
Nous abordons ensuite la conception computationelle dont le but est d'exploiter l'outils computationnel dans le but d'améliorer le processus de conception. Plus précisément, nous examinons l'analyse de sensibilité, qui calcule les sensibilités du résultat de la simulation par rapport aux paramètres de conception afin d'optimiser automatiquement la conception. Dans ce contexte, nous présentons une méthode efficace de calcul de la direction de recherche de Gauss-Newton, en tirant parti des solveurs linéaires directs épars modernes. Notre méthode réduit considérablement le coût de calcul du processus d'optimisation pour une certaine classe de problèmes de conception inverse.
Enfin, nous examinons l'optimisation de la topologie à l'aide de techniques d'apprentissage automatique. Nous posons deux questions : Pouvons-nous faire de l'optimisation topologique sans maillage et pouvons-nous apprendre un espace de solutions d'optimisation topologique. Nous appliquons des représentations neuronales implicites et obtenons des résultats structurellement sensibles pour l'optimisation topologique sans maillage en guidant le réseau neuronal pendant le processus d'optimisation et en adaptant les méthodes d'optimisation topologique par éléments finis. Notre méthode produit une représentation continue du champ de densité. De plus, nous présentons des espaces de solution appris en utilisant la représentation neuronale implicite. / Computer-aided design (CAD), visual effects, robotics and many other fields such as computational biology, aerospace engineering etc. rely on the solution of mathematical problems. In most cases, computational methods are used to solve these problems. The choice and construction of the computational method has large impact on the results and the computational efficiency. The structure of the problem can be used to create methods, that are faster and produce qualitatively better results than methods that do not use the structure. This thesis presents three articles with three new computational methods tackling partial differential equation (PDE) constrained simulation and optimization problems.
In the first article, we tackle the problem of energy dissipation of common fluid solvers in visual effects. Fluid solvers are ubiquitously used to create effects in animated shorts and feature films. We present a time integration scheme for incompressible fluid dynamics which preserves energy better than many previous methods. The presented method has low overhead and can be integrated into a wide range of existing methods. The improved energy conservation leads to noticeably more dynamic animations.
We then move on to computational design whose goal is to harnesses computational techniques for the design process. Specifically, we look at sensitivity analysis, which computes the sensitivities of the simulation result with respect to the design parameters to automatically optimize the design. In this context, we present an efficient way to compute the Gauss-Newton search direction, leveraging modern sparse direct linear solvers. Our method reduces the computational cost of the optimization process greatly for a certain class of inverse design problems.
Finally, we look at topology optimization using machine learning techniques. We ask two questions: Can we do mesh-free topology optimization and can we learn a space of topology optimization solutions. We apply implicit neural representations and obtain structurally sensible results for mesh-free topology optimization by guiding the neural network during optimization process and adapting methods from finite element based topology optimization. Our method produces a continuous representation of the density field. Additionally, we present learned solution spaces using the implicit neural representation.
|
Page generated in 0.1109 seconds