• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • Tagged with
  • 243
  • 243
  • 243
  • 140
  • 103
  • 40
  • 38
  • 35
  • 30
  • 30
  • 28
  • 26
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Structured Light-Field Focusing 3D Density Measurements of A Supersonic Cone

Ozawa, Ryonosuke 01 January 2018 (has links)
This study describes three-dimensional (3D) quantitative visualization of density field in a supersonic flow around a cone spike. A measurement of the density gradient is conducted within a supersonic wind tunnel facility at the Propulsion and Energy Research Laboratory at the University of Central Florida utilizing Structured Light-Field Focusing Schlieren (SLLF). In conventional schlieren and Shadowgraph techniques, it is widely known that a complicated optical system is needed and yet visualizable area depends on an effective diameter of lenses and mirrors. Unlike these techniques, SLLF is yet one of the same family as schlieren photography, it is capable of non-intrusive turbulent flow measurement with relatively low cost and easy-to-setup instruments. In this technique, cross-sectional area in the flow field that is parallel to flows can be observed while other schlieren methods measure density gradients in line-of-sight, meaning that it measures integrated density distribution caused by discontinuous flow parameters. To reconstruct a 3D model of shock structure, two-dimensional (2D) images are pictured to process in MATLAB. The ultimate goal of this study is to introduce a novel technique of SLLF and quantitative 3D shock structures generated around a cone spike to reveal the interaction between free-stream flow and the high-pressure region.
42

Modeling of flow generated sound in a constricted duct at low Mach number flow

Thibbotuwawa Gamage, Peshala 01 January 2017 (has links)
Modelling flow and acoustics in a constricted duct at low Mach numbers is important for investigating many physiological phenomena such as phonation, generation of arterial murmurs, and pulmonary conditions involving airway obstruction. The objective of this study is to validate computational fluid dynamics (CFD) and computational aero-acoustics (CAA) simulations in a constricted tube at low Mach numbers. Different turbulence models were employed to simulate the flow field. Models included Reynolds Average Navier-Stokes (RANS), Detached eddy simulation (DES) and Large eddy simulation (LES). The models were validated by comparing study results with laser doppler anemometry (LDA) velocity measurements. The comparison showed that experimental data agreed best with the LES model results. Although RANS Reynolds stress transport (RST) model showed good agreement with mean velocity measurements, it was unable to capture velocity fluctuations. RANS shear stress transport (SST) k-ω model and DES models were unable to predict the location of high fluctuating flow region accurately. CAA simulation was performed in parallel with LES using Acoustic Perturbation Equation (APE) based hybrid CAA method. CAA simulation results agreed well with measured wall sound pressure spectra. The APE acoustic sources were found in jet core breakdown region downstream of the constriction, which was also characterized by high flow fluctuations. Proper Orthogonal Decomposition (POD) is used to study the coherent flow structures at the different frequencies corresponding to the peaks of the measured sound pressure spectra. The study results will help enhance our understanding of sound generation mechanisms in constricted tubes including biomedical applications.
43

A Flexible Physics-Based Lifing Method for Metals Under Creep and Thermomechanical Fatigue

Irmak, Firat 01 January 2017 (has links)
This thesis focuses on the development of a flexible, physics-based life prediction approach for steels under complex conditions. Low alloy steels continue to be the materials of choice for large turbomachinery structures experiencing high temperatures for long durations. There has been significant advancement in the research of modern alloys; furthermore, these materials are continue to be utilized in boilers, heat exchanger tubes, and throttle valve bodies in both turbomachinery and pressure-vessel/piping applications. The material 2.25Cr-1Mo is studied in the present work. The resistance of this alloy to deformation and damage under creep and/or fatigue at elevated temperatures make it appropriate for structures required to endure decades of service. Also, this material displays an excellent balance of ductility, corrosion resistance, and creep strength under aggressive operating conditions. Both creep-fatigue (CF) and thermomechanical fatigue (TMF) have been the limiting factor for most turbine components fabricated from various alloys; therefore, a life prediction approach is constructed for simulating fatigue life for cases where the material is experiencing mechanical loading with thermal cycling. Flexibility is imparted to the model through its ability to emphasize the dominant damage mechanism which may vary among alloys. A material database is developed to improve and compare the model with experimental data. This database contains low cycle fatigue (LCF), creep fatigue (CF), and thermomechanical fatigue (TMF) experiments. Parameters for the model are obtained with regression fits with the support of a broad experimental database. Additionally, the cumulative damage approach, better known as Miner's rule, is used in this study as the fundamental method to combine damage mechanisms. Life predictions are obtained by the usage of a non-interacting creep-plasticity constitutive model capable of simulating not only the temperature- and rate-dependence.
44

Theoretical Paschen's Law Model for Aerospace Vehicles: Validation Experiment

Mulligan Aroche, Jaysen 01 January 2018 (has links)
Aerospace vehicles often experience triboelectric charging while traversing the atmosphere. Triboelectric charging occurs when a material come into frictional contact with a different material. Aerospace vehicles triboelectrically charge due to frictional contact with dust and ice crystals suspended in the atmosphere. Launch vehicles traversing ice clouds in low-pressure atmosphere are especially prone to electrostatic discharge events (i.e. sparks). These conditions are hazardous and affect the vehicle's launch commit criteria. In 2010, engineers from an ARES-I rocket launch reported concerns with triboelectric charging over their self-destruct system antenna. This concern was addressed by putting the antenna through harsh conditions in a laboratory environment. The need for laboratory testing could have been avoided if there was a mathematical model to predict these events. These discharge events can typically be predicted by the Classical Paschen's Law, which relates discharge voltage to pressure, material and distance between the charged and ground surfaces (i.e. electrodes). However, the Classical Paschen's Law does not capture any aerodynamic considerations such as large bulk flow and compressibility effects. It became apparent that a new model would be needed to predict a discharge voltage with aerodynamic considerations. This research focused on defining a theoretical model and providing experimental data to validate the model. The hypothesis of this work is that charged ions are removed too quickly for enough charge to build up and result in an electrostatic discharge at the voltage that is predicted by the Classical Paschen's Law. The wind tunnel testing for this experiment was conducted at the Center for Advanced Turbomachinery & Energy Research (CATER) facility. A charged electrode was exposed to flows at Mach numbers 1.5 to 3.5. It was found that the supersonic flow suppressed the electrostatic discharge events. The voltage required for an electrostatic discharge at supersonic conditions increased by a factor of three. The modified Paschen's Law can help in defining the launch commit criteria of aerospace vehicles.
45

Hybrid Multi-Objective Optimization of Left Ventricular Assist Device Outflow Graft Anastomosis Orientation to Minimize Stroke Rate

Lozinski, Blake 01 January 2019 (has links)
A Left Ventricular Assist Device (LVAD) is a mechanical pump that is utilized as a bridge to transplantation for patients with a Heart Failure (HF) condition. More recently, LVADs have been also used as destination therapy and have provided an increase in the quality of life for patients with HF. However, despite improvements in VAD design and anticoagulation treatment, there remains a significant problem with VAD therapy, namely drive line infection and thromboembolic events leading to stroke. This thesis focuses on a surgical maneuver to address the second of these issues, guided by previous steady flow hemodynamic studies that have shown the potential of tailoring the VAD outflow graft (VAD-OG) implantation in providing up to 50% reduction in embolization rates. In the current study, multi-scale pulsatile hemodynamics of the VAD bed is modeled and integrated in a fully automated multi-objective shape optimization scheme in which the VAD-OG anastomosis along the Ascending Aorta (AA) is optimized to minimize the objective function which include thromboembolic events to the cerebral vessels and wall shear stress (WSS). The model is driven by a time dependent pressure and flow boundary conditions located at the boundaries of the 3D domain through a 50 degree of freedom 0D lumped parameter model (LPM). The model includes a time dependent multi-scale Computational Fluid Dynamics (CFD) analysis of a patient specific geometry. Blood rheology is modeled as using the non-Newtonian Carreua-Yasuda model, while the hemodynamics are that of a laminar and constant density fluid. The pulsatile hemodynamics are resolved using the commercial CFD solver StarCCM+ while a Lagrangian particle tracking scheme is used to track constant density particles modeling thromobi released from the cannula to determine embolization rated of thrombi. The results show that cannula anastomosis orientation plays a large role when minimizing the objective function for patient derived aortic bed geometry used in this study. The scheme determined the optimal location of the cannula is located at 5.5 cm from the aortic root, cannula angle at 90 degrees and coronal angle at 8 degrees along the AA with a peak surface average WSS of 55.97 dy/cm2 and stroke percentile of 12.51%. A Pareto front was generated showing the range of 9.7% to 44.08% for stroke and WSS of 55.97 to 81.47 dy/cm2 ranged over 22 implantation configurations for the specific case studied. These results will further assist in the treatment planning for clinicians when implementing a LVAD.
46

Investigation of the Flow Field and Associated Heat Transfer within an Asymmetrical Leading Edge Jet Impingement Array

Torres, Jorge 01 January 2019 (has links)
This thesis investigates the turbulent flow features present in asymmetrical leading edge jet impingement and their effects from a fluid and heat transfer prospective using both numerical and experimental techniques. The jet-centerline plane flow field was quantified experimentally through the non-intrusive experimental method of Particle Image Velocimetry (PIV), while an area average heat transfer was acquired via a traditional copper block method. The numerical element served to investigate how well the Reynolds Averaged Navier-Stokes (RANS) k-? SST turbulence model predicts the flow field and heat transfer within the leading edge and further investigate the results outside of the experimental scope. Two different geometries, varied by H/d, were investigated at various Reynolds numbers ranging from 20,000 to 80,000. The geometry consisted of an array of 9 identical jets impinging on a leading edge of diameter D/d = 2, with an asymmetrical sidewall configuration to better represent the pressure side (PS) and suction side (SS) of a turbine blade. Several vortices were identified within the flow field of the leading edge geometry. These vortices were larger for the H/d = 4 configuration but did not contribute to any increased or decreased heat transfer compared to that of the H/d = 2.7 configuration. The most influential aspect to both the flow field and heat transfer was the change in crossflow velocity between the two geometries. The smaller cross sectional area of the H/d = 2.7 configuration saw an increase in crossflow velocity and jet bending, tending to also decrease the heat transfer. The numerical results also reflected these results and in both area averaged heat transfer and localized heat transfer contour plots.
47

A Multi-Species Single-LED Hazardous Gas Sensor for Commercial Space Applications

Parupalli, Akshita 01 January 2019 (has links)
In the interest of furthering both commercial and government-funded opportunities for deep space exploration, the safety of life and equipment onboard must be absolutely certain. In this regard, the presence of any hazardous gases or combustion events onboard space vehicles must be quickly characterized and detected. Several hazardous gases of interest have absorption features in the mid-infrared range and can be detected with an infrared light source, via the principles of absorption spectroscopy. A non-dispersive infrared (NDIR) sensor that follows these principles has been developed to utilize light-emitting diodes (LEDs) for gas detection and quantification. LEDs contain a particular advantage in this situation because they have low power requirements, are robust and easily adaptable, and they are cheaper than existing laser-based systems. The design has successfully performed several laboratory, environmental chamber, and high-altitude balloon flight tests. The main purpose of these various tests was to place the sensor in challenging environments, examine the effects on sensor performance, and adjust accordingly. The current sensor design utilizes a single 4.2?m LED and a rotating diffraction grating to detect both carbon dioxide (CO2) and nitrous oxide (N2O) within a single scan. These measurements were further validated using two distributed feedback quantum cascade lasers (QCL) centered at 4.25?m and 4.58?m. The sensor collected data on a wavelength range of 4117nm to 4592nm. Mixtures containing the concentrations of the two species of interest varying from 0.2% to 0.8% were analyzed. The integrated absorbance data was calculated for each species and compared with theoretical predictions. The results show that the data follows the expected behavior and correlates better at lower concentrations. Subsequent work on this sensor will focus on increasing the quantity of identifiable gases and on further testing in hazardous environments.
48

Characterization of Turbulent Flame-Vortex Interaction for Bluff Body Stabilized Flames

Rising, Cal 01 January 2019 (has links)
Modern propulsion systems primarily operate under highly turbulent conditions in order to promote greater efficiency through an increase in mixing. The focus of this thesis is to identify the turbulent flame-vortex interaction to provide insights into the turbulent combustion process. This work is accomplished through the use of turbulent ramjet-style combustor which is stabilized through use of a bluff-body. The facility is equipped with a custom turbulence generator to modulate the incoming turbulence levels to allow flames across various regimes to be analyzed. High-speed particle image velocimetry (PIV) and CH* chemiluminescence diagnostics are implemented to resolve the flow field and flame position. The flame-vortex interaction can be described by the vorticity transport which has four terms; vortex stretching, baroclinic torque, dilatation, and viscous diffusion. The vorticity mechanisms are calculated through the implementation of a Lagrangian tracking scheme, which allows for the individual mechanisms to be decomposed along the path of individual tracks. The mechanisms are compared across different turbulence levels to determine the effects of turbulence on the vorticity mechanisms. The mechanisms are calculated along the flame front as well to determine the individual effects of the vorticity mechanisms on the evolving structure of the turbulent premixed flame. The flame front curvature is also compared across the various turbulence conditions. The results confirm that as the flame-front experiences increased turbulence levels the combustion induced mechanisms of baroclinic torque and dilation decrease, while vortex stretching increases. This is a result of the turbulent energy exchange becoming the controlling factor within the flow-field. In addition, increased flame curvature is experience by the flame front due to increased local baroclinicity and turbulent energy exchange.
49

The Interaction Between Throttling and Thrust Vectoring of an Annular Aerospike Nozzle

Imbaratto, David Michael 01 September 2009 (has links) (PDF)
Applied research and testing has been conducted at the Cal Poly San Luis Obispo High-pressure Blow-Down facility to study the affects of throttling in a thrust-vectored aerospike nozzle. This study supports the ongoing research at Cal Poly to effectively thrust vector a hybrid rocket motor. Such thrust vectoring is achieved by small secondary ports in the nozzle body that are perpendicular to the main nozzle. The testing conducted included characterizing and comparing the performance of a straight aerospike nozzle to that of a thrust-vectored aerospike nozzle. Throttling effects on the aerospike nozzle in an unvectored and in a vectored configuration were also investigated. The interaction between throttling and thrust vectoring of an aerospike nozzle is the focus of this thesis research. This research shows that large-throat/high-thrust operation of an aerospike nozzle provides little thrust vector generation. Conversely, small-throat/low-thrust operation provides ample thrust vector generation. These results have implications in the effectiveness of thrust vectoring an aerospike nozzle with secondary ports. Rockets having an aerospike nozzle with throttling capabilities will be subject to the minimum and maximum turn angles for a given throttle position. As such, certain vehicle maneuvers might not be obtainable at certain throttle operations. Conversely, at lower throttling conditions, higher turn angles will be achievable.
50

Numerical Simulation of Non-Premixed and Premixed Axial Stage Combustor at High Pressure

Worbington, Tyler 01 January 2019 (has links)
Axial-staged combustors represent an important concept that can be applied to reduce NOx emissions throughout a gas turbine engine. There are four main CFD models presented in this study that describe a highly turbulent jet-in-crossflow (JIC) simulation of partially premixed and non-premixed jets with a constant chamber pressure of 5 atm absolute. The equivalence ratio of the partially premixed jet was held constant at rich conditions with a �������� of 4 while the main stage varied from ��1 and ��2 of 0.575 and 0.73 with an average headend temperature of 1415K and 1545K, respectively. Chemistry was reduced by tabulation of eight main species using the equilibrium calculation of the software Chemkin. The centerline temperatures entering the JIC stage were measured experimentally and used as the starting point of a radial temperature profile that follows a parabolic trend. Comparison between the uniform and radial temperature profiles showed that the latter had a higher penetration depth into the vitiated crossflow due to a direct relationship between temperature and velocity. To capture the combustion process, Flamelet Generated Manifold (FGM) model was used. The progress variable source uses Turbulent Flame Speed Closure (TFC) to calculate flame propagation and position. There are two distinct flame positions of stability, the windward and leeward sides of the jet. The leeward flame positions for the two equivalence ratios showed that the richer condition sits closer to the jet due to the hotter equilibrium temperature; while the windward flame position is shifted upstream for the leaner case due to more availability of oxygen. The total temperature rise for ��1 = 0.575 and ��2 = 0.73 are T = 239 K and 186 K, respectively. The non-premixed simulations used a Steady Laminar Flamelet (SLF) approach with a headend equivalence ratio of �������� = 0.6 and a detailed prediction of CH4 usage, CO production, and temperature increase throughout the jet-in-crossflow domain. Methane was shown to be consumed at a high amount, at almost 90% conversion with a temperature rise of T = 149 K. The heat release is below the calculated equilibrium ΔT with the main reason pointed out that a significant amount of CH4 is only partially oxidized to CO due to limited oxygen availability with a fuel only configuration. Realizable K-Epsilon, SST K-Omega γ-Reθ, and Reynolds Stress Transport (RST) turbulence models were used and compared. RST turbulence model showed to over predict the penetration depths and dissipation of the jet in the downstream domain when compared to literature and experimental data.

Page generated in 0.0608 seconds