• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of endwall film-cooling in axial turbines

Thomas, Mitra January 2014 (has links)
Considerable reductions in gas turbine weight and fuel consumption can be achieved by operating at a higher turbine entry temperature. The move to lean combustors with flatter outlet temperature profiles will increase temperatures on the turbine endwalls. This work will study methods to improve endwall film cooling, to allow these advances. Turbine secondary flows are caused by a deficit in near-wall momentum. These flow features redistribute near-wall flows and make it difficult to film-cool endwalls. In this work, endwall film cooling was studied by CFD and validated by experimental measurements in a linear cascade. This study will add to the growing body of evidence that injection of high momentum coolant into the upstream boundary layer can suppress secondary flows by increasing near-wall momentum. The reduction of secondary flows allows for effective cooling of the endwall. It is also noted that excess near-wall momentum is undesirable. This leads to upwash on the vane, driving coolant away from the endwall. A passive-scalar tracking method has been devised to isolate the contribution of individual film cooling holes to cooling effectiveness. This method was used to systematically optimize endwall cooling systems. Designs are presented which use half the coolant mass flow compared to a baseline design, while maintaining similar cooling effectiveness levels on the critical trailing endwall. By studying the effect of coolant injection on vane inlet total pressure profile, secondary flows were suppressed and upwash on the vane was reduced. The methods and insight obtained from this study were applied to a high pressure nozzle guide vane endwall from a current engine. The optimized cooling system developed offers significant improvement over the baseline.
2

Aerodynamics of Endwall Contouring with Discrete Holes and an Upstream Purge Slot Under Transonic Conditions  with and without Blowing

Blot, Dorian Matthew 23 January 2013 (has links)
Endwall contouring has been widely studied as an effective measure to improve aerodynamic performance by reducing secondary flow strength. The effects of endwall contouring with discrete holes and an upstream purge slot for a high turning (127") airfoil passage under transonic conditions are investigated. The total pressure loss and secondary flow field were measured for two endwall geometries. The non-axisymmetric endwall was developed through an optimization study [1] to minimize secondary losses and is compared to a baseline planar endwall. The blade inlet span increased by 13 degrees with respect to the inlet in order to match engine representative inlet/exit Mach number loading in a HP turbine.  The experiments were performed in a quasi-2D linear cascade with measurements at design exit Mach number 0.88 and incidence angle. Four cases were analyzed for each endwall -- the effect of slot presence (with/without coolant) and the effect of discrete holes (with/without coolant) without slot injection. The coolant to mainstream mass flow ratio was set at 1.0% and 0.25% for upstream purge slot and discrete holes, respectively.  Aerodynamic loss coefficient is calculated with the measured exit total pressure at 0.1 Cax downstream of the blade trailing edge. CFD studies were conducted in compliment. The aero-optimized endwall yielded lower losses than baseline without the presence of the slot. However, in presence of the slot, losses increased due to formation of additional vortices. For both endwall geometries, results reveal that the slot has increased losses, while the addition of coolant further influences secondary flow development. / Master of Science

Page generated in 0.0574 seconds