• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 57
  • 57
  • 30
  • 26
  • 26
  • 26
  • 22
  • 17
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Assessment of Asymmetric Flight on Solar UAS

Belfield, Eric 01 December 2016 (has links) (PDF)
An investigation was conducted into the feasibility of using an unconventional flight technique, asymmetric flight, to improve overall efficiency of solar aircraft. In this study, asymmetric flight is defined as steady level flight in a non-wings-level state in- tended to improve solar incidence angle. By manipulating aircraft orientation through roll angle, solar energy collection is improved but aerodynamic efficiency is worsened due to the introduction of additional trim drag. A point performance model was devel- oped to investigate the trade-off between improvement in solar energy collection and additional drag associated with asymmetric flight. A mission model with a focus on aircraft orbits was then developed via integration of the point performance model over a set of discrete points. It is shown that there is a non-zero bank angle where optimal net power is achieved for a given aircraft orientation, flight condition, and sun position. The study also shows that there is improvement in overall efficiency over conventional flight for various orbit shapes and winds aloft. This indicates that there is potential value in not only flight path planning, but also in orientation planning for solar aircraft.
42

Risk-Based Approach to Assessment of Advanced Technologies for Conceptual Design

Asmady, Adipratnia 01 August 2016 (has links) (PDF)
The conceptual design phase of an aerospace system development program is typically characterized by short duration and relatively limited resources, yet design decisions are made that have critical implications on program risk. To address the more aggressive requirements, one of these decisions is the selection of advanced technologies. System developers need to assess advanced technologies early on, but are faced with uncertainties surrounding the potential net benefits. The concept introduced in this study is uncertainty characterization as a way to better understand the associated risk. A framework was developed to guide the interaction between the technology developer and the system developer. The objective is to gain a more comprehensive landscape of the technology options by explicitly considering the effects of uncertainty in the decision making process. This can ultimately facilitate prioritization and resource management during conceptual design. An example case of advanced wing technology was applied to the design of a high-altitude long-endurance unmanned aerial vehicle to demonstrate the implementation of the framework.
43

A Flight Simulation Study of the Simultaneous Non-interfering Aircraft Approach

Reel, Brian H 01 May 2009 (has links) (PDF)
Using a new implementation of a NASA flight simulation of the Quiet Short-Haul Research Aircraft, autopilots were designed to be capable of flying both straight in (ILS) approaches, and circling (SNI) approaches. A standard glideslope coupler was sufficient for most conditions, but a standard Proportional-Integral-Derivative (PID) based localizer tracker was not sufficient for maintaining a lateral track on the SNI course. To track the SNI course, a feed-forward system, using GPS steering provided much better results. NASA and the FAA embrace the concept of a Simultaneous, Non-Interfering (SNI) approach as a way to increase airport throughput while reducing the noise footprints of aircraft on approach. The NASA concept for the SNI approach for Short Takeoff and Landing (STOL) aircraft involves a straight in segment flown above the flight path of a normal approach, followed by a spiraling descent to the runway. As this is a procedure that would be utilized by regional airliners, it is assumed that it would be conducted under Instrument Flight Rules (IFR). GPS or INS guidance would be required to fly this approach, and it is likely that it would be necessary to fly the approach with a coupled autopilot: a stabilized, curving, instrument approach to decision altitude would be exceedingly difficult to fly. The autopilots in many current commuter and general aviation aircraft, however, were designed before the event of GPS, and do not have provisions for tracking curved paths. This study identifies problem areas in implementing the SNI circling approach on aircraft and avionics as they stand today and also gives examples of what can be done for the SNI approach to be successful.
44

Evaluation of early maturing cultivars, optimal harvest timing, and canopy reflectance of peanut to maximize grade and yield

Whittenton, Joseph Bryan 12 May 2023 (has links) (PDF)
Peanut digging timing is difficult to predict due to indeterminate growth and peanut pods maturing underground, resulting in the need to research methods that provide consistent measurements, while reducing time and effort for farmers and researchers. Experiments were conducted to evaluate the accuracy of the Maturity Index 1 and Maturity Index 2 in predicting peanut grade, the accuracy of the North Carolina 2 degree day method in predicting peanut yield, and remote sensing vegetative indices sensitivity equivalence (SEq) to peanut Maturity Index 2 and harvest grade (TSMK) for cultivars IPG-914 and Georgia-06G in Mississippi. Maturity Index 1 and Maturity Index 2 were found to be inaccurate predictions of peanut grade in Mississippi, suggesting a need to examine the contributions of individual color classes in new genotypes to predict grade and yield. The North Carolina 2 degree day method was found to have a moderate to strong relationship with yield, indicating its potential usefulness in determining digging timing. Results also showed red edge indices were more sensitive to changes in pod maturity and grade. Peanut genotype selection is critical for maximizing peanut grade and yield on farm. Experiments were conducted to evaluate 32 genotypes for maturity, grade, and yield. Several early maturing genotypes showed promise for improving yield and grade without reducing quality, particularly 'UF11x23-3-6-1-1', '16-1-2147', '16-1-2142', '14x029-1-5-1-1', and '14x022-1-2-1-2'. The results suggest earlier maturing genotypes may be a solution to the late-season harvest risk of crop loss due to poor digging conditions, rain, and frost, while maintaining similar pod grades and yield to the current market-leading cultivars. The findings of this study contribute to the ongoing effort to optimize digging timing and improve peanut yields in Mississippi, where peanut farmers face the dual challenges of climatic variability and genotype selection. Future research is needed to examine the adaptability of genotypes on differing soil types, management, and climates throughout Mississippi. Overall, this study highlights the need for more effective and accurate methods for determining digging timing in peanut crops, which is crucial for their grade, and yield.
45

SMALL SATELLITE NONCOMMUTATIVE ROTATION SEQUENCE ATTITUDE CONTROL USING PIEZOELECTRIC ACTUATORS

Evans, Joshua L. 01 January 2016 (has links)
Attitude control remains one of the top engineering challenges faced by small satellite mission planning and design. Conventional methods for attitude control include propulsion, reaction wheels, magnetic torque coils, and passive stabilization mechanisms, such as permanent magnets that align with planetary magnetic fields. Drawbacks of these conventional attitude control methods for small satellites include size, power consumption, dependence on external magnetic fields, and lack of full control authority. This research investigates an alternative, novel approach to attitude-control method for small satellites, utilizing the noncommutative property of rigid body rotation sequences. Piezoelectric bimorph actuators are used to induce sinusoidal small-amplitude satellite oscillations on two of the satellites axes. While zero net change occurs on these signaled axes, the third axis can develop an average angular rate. This noncommutative attitude control methodology has several advantages over conventional methods, including scalability, power consumption, and operation outside of Earth's magnetic field. This research looks into the feasibility of such a system, and lays the foundation for a simple control system architecture.
46

Continuously Variable Rotorcraft Propulsion System: Modelling and Simulation

Vallabhaneni, Naveen Kumar 01 August 2011 (has links)
This study explores the variable speed operation and shift response of a prototype of a two speed single path CVT rotorcraft driveline system. Here a Comprehensive Variable Speed Rotorcraft Propulsion system Modeling (CVSRPM) tool is developed and utilized to simulate the drive system dynamics in steady forward speed condition. This investigation attempts to build upon previous variable speed rotorcraft propulsion studies by: 1) Including fully nonlinear first principles based transient gas-turbine engine model 2) Including shaft flexibility 3) Incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insight into the continuing development of variable speed rotorcraft propulsion systems.
47

AERODYNAMICS AND CONTROL OF A DEPLOYABLE WING UAV FOR AUTONOMOUS FLIGHT

Thamann, Michael 01 January 2012 (has links)
UAV development and usage has increased dramatically in the last 15 years. In this time frame the potential has been realized for deployable UAVs to the extent that a new class of UAV was defined for these systems. Inflatable wing UAVs provide a unique solution for deployable UAVs because they are highly packable (some collapsing to 5-10% of their deployed volume) and have the potential for the incorporation of wing shaping. In this thesis, aerodynamic coefficients and aileron effectiveness were derived from the equations of motion of aircraft as necessary parameters for autonomous flight. A wind tunnel experiment was performed to determine the aerodynamic performance of a bumpy inflatable wing airfoil for comparison with the baseline smooth airfoil from which it was derived. Results showed that the bumpy airfoil has improved aerodynamics over the smooth airfoil at low-Re. The results were also used to create aerodynamic performance curves to supplement results of aerodynamic modeling with a smooth airfoil. A modeling process was then developed to calculate the aileron effectiveness of a wing shaping demonstrator aircraft. Successful autonomous flight tests were then performed with the demonstrator aircraft including in-flight aileron doublets to validate the predicted aileron effectiveness, which matched within 8%.
48

FILTERED-DYNAMIC-INVERSION CONTROL FOR FIXED-WING UNMANNED AERIAL SYSTEMS

Mullen, Jon 01 January 2014 (has links)
Instrumented umanned aerial vehicles represent a new way of measuring turbulence in the atmospheric boundary layer. However, autonomous measurements require control methods with disturbance-rejection and altitude command-following capabilities. Filtered dynamic inversion is a control method with desirable disturbance-rejection and command-following properties, and this controller requires limited model information. We implement filtered dynamic inversion as the pitch controller in an altitude-hold autopilot. We design and numerically simulate the continuous-time and discrete-time filtered-dynamic-inversion controllers with anti-windup on a nonlinear aircraft model. Finally, we present results from a flight experiment comparing the filtered-dynamic-inversion controller to a classical proportional-integral controller. The experimental results show that the filtered-dynamic-inversion controller performs better than a proportional-integral controller at certain values of the parameter.
49

Multidisciplinary Design Optimization of an Extreme Aspect Ratio HALE UAV

Morrisey, Bryan J 01 June 2009 (has links)
ABSTRACT Multidisciplinary Design Optimization of an Extreme Aspect Ratio HALE UAV Bryan J. Morrisey Development of High Altitude Long Endurance (HALE) aircraft systems is part of a vision for a low cost communications/surveillance capability. Applications of a multi payload aircraft operating for extended periods at stratospheric altitudes span military and civil genres and support battlefield operations, communications, atmospheric or agricultural monitoring, surveillance, and other disciplines that may currently require satellite-based infrastructure. Presently, several development efforts are underway in this field, including a project sponsored by DARPA that aims at producing an aircraft that can sustain flight for multiple years and act as a pseudo-satellite. Design of this type of air vehicle represents a substantial challenge because of the vast number of engineering disciplines required for analysis, and its residence at the frontier of energy technology. The central goal of this research was the development of a multidisciplinary tool for analysis, design, and optimization of HALE UAVs, facilitating the study of a novel configuration concept. Applying design ideas stemming from a unique WWII-era project, a “pinned wing” HALE aircraft would employ self-supporting wing segments assembled into one overall flying wing. The research effort began with the creation of a multidisciplinary analysis environment comprised of analysis modules, each providing information about a specific discipline. As the modules were created, attempts were made to validate and calibrate the processes against known data, culminating in a validation study of the fully integrated MDA environment. Using the NASA / AeroVironment Helios aircraft as a basis for comparison, the included MDA environment sized a vehicle to within 5% of the actual maximum gross weight for generalized Helios payload and mission data. When wrapped in an optimization routine, the same integrated design environment shows potential for a 17.3% reduction in weight when wing thickness to chord ratio, aspect ratio, wing loading, and power to weight ratio are included as optimizer-controlled design variables. Investigation of applying the sustained day/night mission requirement and improved technology factors to the design shows that there are potential benefits associated with a segmented or pinned wing. As expected, wing structural weight is reduced, but benefits diminish as higher numbers of wing segments are considered. For an aircraft consisting of six wing segments, a maximum of 14.2% reduction in gross weight over an advanced technology optimal baseline is predicted.
50

A System Architecture for Phased Development of Remote sUAS Operation

Ashley, Eric 01 March 2020 (has links)
Current airspace regulations require the remote pilot-in-command of an unmanned aircraft systems (UAS) to maintain visual line of sight with the vehicle for situational awareness. The future of UAS will not have these constraints as technology improves and regulations are changed. An operational model for the future of UAS is proposed where a remote operator will monitor remote vehicles with the capability to intervene if needed. One challenge facing this future operational concept is the ability for a flight data system to effectively communicate flight status to the remote operator. A system architecture has been developed to facilitate the implementation of such a flight data system. Utilizing the system architecture framework, a Phase I prototype was designed and built for two vehicles in the Autonomous Flight Laboratory (AFL) at Cal Poly. The project will continue to build on the success of Phase I, culminating in a fully functional command and control system for remote UAS operational testing.

Page generated in 0.0461 seconds