• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • Tagged with
  • 29
  • 29
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

COMPARISON OF ALAMOUTI AND DIFFERENTIAL SPACE-TIME CODES FOR AERONAUTICAL TELEMETRY DUAL-ANTENNA TRANSMIT DIVERSITY

Jensen, Michael A., Rice, Michael D., Anderson, Adam L. 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / The placement of two antennas on an air vehicle is one possible practice for overcoming signal obstruction created by vehicle maneuvering during air-to-ground transmission. Unfortunately, for vehicle attitudes where both antennas have a clear path to the receiving station, this practice also leads to self-interference nulls, resulting in dramatic degradation in the average signal integrity. This paper discusses application of unitary space-time codes such as the Alamouti transmit diversity scheme and unitary differential space-time codes to overcome the self-interference effect observed in such systems.
2

TRANSMIT DIVERSITY SCHEME FOR DUAL-ANTENNA AERONAUTICAL TELEMETRY SYSTEMS

Crummett, Ronald C., Jensen, Michael A., Rice, Michael D. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / The use of two antennas on an aeronautical telemetry transmitter is a common practice for overcoming signal obstruction that can occur during air vehicle maneuvering. However, this practice also leads to interference nulls that can cause dramatic degradation in the average signal integrity. This paper discusses the application of a transmit diversity scheme capable of overcoming this interference problem. The development leads to symbol error probability expressions that can be applied to assess the performance of the scheme relative to that of traditional schemes. Representative computational examples demonstrate the potential of the method.
3

A WIDEBAND CHANNEL MODEL FOR AERONAUTICAL TELEMETRY — PART 1: GEOMETRIC CONSIDERATIONS AND EXPERIMENTAL CONFIGURATION

Rice, Michael, Davis, Adam, Bettwieser, Christian 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / This paper is the first of two papers that present a multipath channel model for wideband aeronautical telemetry. Channel sounding data, collected at Edwards AFB, California at both L-Band and lower S-Band, were used to generate channel model. In Part 1, analytic and geometric considerations are discussed and the frequency domain modeling technique is introduced. In Part 2, the experimental results are summarized and a channel model composed of three propagation paths is proposed.
4

A WIDEBAND CHANNEL MODEL FOR AERONAUTICAL TELEMETRY — PART 2: MODELING RESULTS

Rice, Michael, Davis, Adam, Bettwieser, Christian 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / This paper is the second of two papers that present a multipath channel model for wideband aeronautical telemetry. Channel sounding data were collected at Edwards AFB, California at both L-Band and lower S-Band. Frequency domain analysis techniques were used to evaluate candidate channel models. The channel model is composed of three propagation paths: a line-of-sight path, and two specular reflections. The first specular reflection is characterized by a relative amplitude of 70% to 96% of the line-of-sight amplitude and and a delay of 10 – 80 ns. This path is the result of “ground bounces” off the dry lake bed at Edwards and is a typical terrain feature at DoD test ranges located in the Western USA. The amplitude and delay of this path are defined completely by the flight path geometry. The second path is a much lower amplitude path with a longer delay. The gain of this path is well modeled as a zero-mean complex Gaussian random variable. The relative amplitude is on the order of 2% to 8% of the line-of-sight amplitude. The mean excess delay is 155 ns with an RMS delay spread of 74 ns.
5

Automatic Modulation Recognition for Aeronautical Telemetry

Frogget, Jacob William 14 December 2013 (has links) (PDF)
This these explores automatic modulation recognition as applied to PCM/FM, SOQPSK- TG and ARTM CPM. It found that the likelihood based approach is intractable. The statistical features of the amplitude, phase and frequency are ineffective at distinguishing these modulation types. A method based on the phase changes between symbols is developed and shows that as long as symbol timing is established, this method can effectively distinguish PCM/FM, SOQPSK-TG and ARTM CPM for signal-to-noise ratios above 30 dB. Another method, the Bianchi-Loubaton- Sirven technique, was able to distinguish PCM/FM and SOQPSK-TG but was unable to distinguish ARTM CPM. A happy byproduct of this classification algorithm is a reasonably accurate estimate of the bit rate. Simulation results show that this classifier works essentially error-free for signal- to-noise ratios above 20 dB and for sufficiently high resolution in the search algorithms required by the maximizations.
6

Simulating the Performance of Tracking a Spinning Missile at C-Band

Kartchner, Darren Robert 04 November 2013 (has links) (PDF)
The amplitude fluctuation induced by a spinning missile acts as a disturbance on tracking schemes that use sequential lobing (e.g., conscan). In addition, if a tracking system converts from S-band to C-band, the beamwidth is narrower and the wrap-around antenna on the missile requires more patches, and so the margin of error for tracking decreases. Tracking performance is simulated with a spinning missile with ballistic and fly-by trajectories while running at C-band. The spinning missile causes a periodic component in the pointing error, and when the scan frequency is an integer multiple of the roll rate, several tracking schemes lose track of the target. Remedial techniques are discussed, including increasing the scan frequency and using simultaneous (monopulse) tracking rather than sequential lobing.
7

TELEMETRY LINK RELIABILITY IMPROVEMENT VIA “NO-HIT” DIVERSITY BRANCH SELECTION

Jefferis, Robert P. 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / Multipath propagation consisting largely of specular reflection components is known to be the major channel impairment in many aeronautical mobile telemetry (AMT) applications. Adaptive equalizers are not effective against flat fading commonly created by strong power delay profile components representing small fractions of the transmitted symbol period. Avoidance and diversity techniques are the only practical means of combating this problem. A new post-detection, no-hit diversity branch selector is described in this paper. Laboratory and limited flight test data comparing non-diversity, selection diversity and intermediate frequency (IF) combining techniques are presented.
8

REDUCED COMPLEXITY TRELLIS DETECTION OF SOQPSK-TG

Nelson, Tom 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / The optimum detector for shaped offset QPSK (SOQPSK) is a trellis detector which has high complexity (as measured by the number of detection filters and trellis states) due to the memory inherent in this modulation. In this paper we exploit the cross-correlated, trellis-coded, quadrature modulation (XTCQM) representation of SOQPSK-TG to formulate a reduced complexity detector. We show that a factor of 128 reduction in the number of trellis states of the detector can be achieved with a loss of only 0.2 dB in bit error rate performance as compared to optimum at P(b) = 10^(-5).
9

CHANNEL ISSUES FOR DESIGN OF THE iNET RADIO LINK PROTOCOL

Britto, Elizabeth, Mwangi, Patricia 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / This paper presents the issues related to the modeling and performance of the Radio Channel used in Telemetry. Because of the physical environment one expects stressed channel conditions due to multipath, shadowing, and high doppler shift caused by high speeds of up to mach 3. Prior work has created useful data and models for analysis of these radio channels. This paper will develop features of a channel simulator that will allow for evaluation of radio protocols for iNET. Substantial work has also been done to develop requirements for the iNET networked radio environment. This paper will map these requirements into technical features required for the radio link and consider how these will relate to the effects of the channels.
10

SPACE-TIME CODED SOQPSK IN THE PRESENCE OF DIFFERENTIAL DELAYS

Nelson, Tom 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / This paper presents a method of detecting the Tier I modulation SOQPSK when it is used in a space-time coded (STC) system in which there is a non-negligible differential delay between the received signals. Space-time codes are useful to eliminate data dropouts which occur on aeronautical telemetry channels in which transmit diversity is employed. The proposed detection algorithm employs a trellis to detect the data while accounting for the offset between the in-phase and quadrature-phase components of the signals as well as the differential delay. The performance of the system is simulated and presented and it is shown that the STC eliminates the BER floor which results from the data dropouts.

Page generated in 0.0631 seconds