• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aerosol Condensational Growth in Cloud Formation

Geng, Jun 2010 August 1900 (has links)
A code for the quasi-stationary solution of the coupled heat and mass transport equations for aerosols in a finite volume was developed. Both mass and heat are conserved effectively in the volume, which results in a competitive aerosol condensation growth computational model. A further model that couples this competitive aerosol condensation growth computational model with computational fluid dynamics (CFD) software (ANSYS FLUENT) enables the simulation of the realistic atmospheric environment. One or more air parcels, where the aerosols reside, are placed in a very big volume in order to mimic the large atmospheric environment. Mass (water vapor) and heat transportat between the air parcels and the environment facilitates the growth and prevents the parcels from unrealistically overheating. The suppression of cloud condensation nuclei (CCN) growth by high number densities was quantified by our model study. Model study with organic particles (Lmalic acid and maleic acid) indicates that when these organic species and ammonium sulfate are internally mixed, the particles can grow much more than if they are separately associated with distinct particles. Moreover, by using more multiple air parcels, which are randomly assigned with different initial relative humidity values according to a power law distribution, we studied the effects of atmospheric stochastic RH distribution on the growth of CCN.

Page generated in 0.5674 seconds