• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Buckling Analysis of Composite Stiffened Panels and Shells in Aerospace Structure

Beji, Faycel Ben Hedi 08 January 2018 (has links)
Stiffeners attached to composite panels and shells may significantly increase the overall buckling load of the resultant stiffened structure. Initially, an extensive literature review was conducted over the past ten years of published work wherein research was conducted on grid stiffened composite structures and stiffened panels, due to their applications in weight sensitive structures. Failure modes identified in the literature had been addressed and divided into a few categories including: buckling of the skin between stiffeners, stiffener crippling and overall buckling. Different methods have been used to predict those failures. These different methods can be divided into two main categories, the smeared stiffener method and the discrete stiffener method. Both of these methods were used and compared in this thesis. First, a buckling analysis was conducted for the case of a grid stiffened composite pressure vessel. Second, a buckling analysis was conducted under the compressive load on the composite stiffened panels for the case of one, two and three longitudinal stiffeners and then, using different parameters, stiffened panels under combined compressive and shear load for the case of one longitudinal centric stiffener and one longitudinal eccentric stiffener, two stiffeners and three stiffeners. / Master of Science / Aircraft in flight is subjected to different loads due to maneuvers and gust, external forces cause internal loads, which depends on the location of the panel in the aircraft, those internal loads, may result in the buckling of the panel. There is an imminent need for structural efficiency, strong and lightweight material. Stiffened composite panels is a promising technology capable of addressing those needs. Composite stiffened panels have many advantages including but not limited to, small manufacturing cost, high stability, great energy absorption, superior damage tolerance etc. The main failure modes for stiffened composite panels is buckling. Buckling failure modes could be of a global nature, local skin buckling or stiffener/rib crippling, predicting those failure is of high practical importance and a predominant design criterion. An extensive literature review on buckling of stiffened composite panels was conducted in this thesis. Buckling analysis as well as a parametric study of grid stiffened composite cylindrical shell for a pressure vessel was conducted, an analytical solution was derived and verified using ABAQUS, a Finite Element Software. Buckling analysis as well as a parametric study of stiffened panels with longitudinal stiffeners, under different structural situations, was also conducted and results verified.
2

Experimentální elektroerozivní obrábění speciálních materiálů pro letecký průmysl / Experimental electroerosion machining of special materials for aerospace industry

Líkař, Martin January 2020 (has links)
This master´s thesis deals with the issues of electroerosive machining material used in aerospace industry. The master´s thesis is divided into the theoretical and practical part. In the theoretical part is described electroerosive machining with a focus on electrical discharge sinking. One section of the theoretical part is an analysis of materials used in the aerospace industry. The practical part of the master´s thesis is focused on electrical discharge sinking of aerospace material INCO 713LC, here is investigated the influence of machining parameters on the surface of the workpiece and tool.

Page generated in 0.0762 seconds