• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A binary dynamic programming problem with affine transitions and reward functions : properties and algorithm

Gatica, Ricardo A. 12 1900 (has links)
No description available.
2

Design of a reusable distributed arithmetic filter and its application to the affine projection algorithm

Lo, Haw-Jing. January 2009 (has links)
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Anderson, Dr. David V.; Committee Member: Hasler, Dr. Paul E.; Committee Member: Mooney, Dr. Vincent J.; Committee Member: Taylor, Dr. David G.; Committee Member: Vuduc, Dr. Richard.
3

Completely splittable representations of symmetric groups and affine Hecke algebras /

Ruff, Oliver, January 2005 (has links)
Thesis (Ph. D.)--University of Oregon, 2005. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 44-45). Also available for download via the World Wide Web; free to University of Oregon users.
4

Asymptotic representations of shifted quantum affine algebras from critical K-theory

Liu, Huaxin January 2021 (has links)
In this thesis we explore the geometric representation theory of shifted quantum affine algebras 𝒜^𝜇, using the critical K-theory of certain moduli spaces of infinite flags of quiver representations resembling the moduli of quasimaps to Nakajima quiver varieties. These critical K-theories become 𝒜^𝜇-modules via the so-called critical R-matrix 𝑅, which generalizes the geometric R-matrix of Maulik, Okounkov, and Smirnov. In the asymptotic limit corresponding to taking infinite instead of finite flags, singularities appear in 𝑅 and are responsible for the shift in 𝒜^𝜇. The result is a geometric construction of interesting infinite-dimensional modules in the category 𝒪 of 𝒜^𝜇, including e.g. the pre-fundamental modules previously introduced and studied algebraically by Hernandez and Jimbo. Following Nekrasov, we provide a very natural geometric definition of qq-characters for our asymptotic modules compatible with the pre-existing definition of q-characters. When 𝒜^𝜇 is the shifted quantum toroidal gl₁ algebra, we construct asymptotic modules DT_𝜇 and PT_𝜇 whose combinatorics match those of (1-legged) vertices in Donaldson--Thomas and Pandharipande--Thomas theories. Such vertices control enumerative invariants of curves in toric 3-folds, and finding relations between (equivariant, K-theoretic) DT and PT vertices with descendent insertions is a typical example of a wall-crossing problem. We prove a certain duality between our DT_𝜇 and PT_𝜇 modules which, upon taking q-/qq-characters, provides one such wall-crossing relation.
5

Design of a reusable distributed arithmetic filter and its application to the affine projection algorithm

Lo, Haw-Jing 06 April 2009 (has links)
Digital signal processing (DSP) is widely used in many applications spanning the spectrum from audio processing to image and video processing to radar and sonar processing. At the core of digital signal processing applications is the digital filter which are implemented in two ways, using either finite impulse response (FIR) filters or infinite impulse response (IIR) filters. The primary difference between FIR and IIR is that for FIR filters, the output is dependent only on the inputs, while for IIR filters the output is dependent on the inputs and the previous outputs. FIR filters also do not sur from stability issues stemming from the feedback of the output to the input that aect IIR filters. In this thesis, an architecture for FIR filtering based on distributed arithmetic is presented. The proposed architecture has the ability to implement large FIR filters using minimal hardware and at the same time is able to complete the FIR filtering operation in minimal amount of time and delay when compared to typical FIR filter implementations. The proposed architecture is then used to implement the fast affine projection adaptive algorithm, an algorithm that is typically used with large filter sizes. The fast affine projection algorithm has a high computational burden that limits the throughput, which in turn restricts the number of applications. However, using the proposed FIR filtering architecture, the limitations on throughput are removed. The implementation of the fast affine projection adaptive algorithm using distributed arithmetic is unique to this thesis. The constructed adaptive filter shares all the benefits of the proposed FIR filter: low hardware requirements, high speed, and minimal delay.

Page generated in 0.0637 seconds