• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transform analysis of affine jump diffusion processes with applications to asset pricing

Bambe Moutsinga, Claude Rodrigue 11 June 2008 (has links)
This work presents a class of models in asset pricing, whose underlying has dynamics of Affine jump diffusion type. We first present L´evy processes with their properties. We then introduce Affine jump diffusion processes which are basically a particular class of L´evy processes. Our motivation for these is driven by the fact that many financial models are built on them. Affine jump diffusion processes present good analytical properties that allow one to get close form formulas for a wide range of option pricing. The approach we use here is based on the paper by Duffie D, Pan J, and Singleton K. An example will show how incorporating parameters such as the volatility of the underlying asset in the model, can influence the resulting price of the financial instrument under consideration. We will also show how this class of models incorporate well known models, specially those used to model interest rates dynamics, like for instance the Vasicek model. / Dissertation (MSc (Mathematics of Finance))--University of Pretoria, 2008. / Mathematics and Applied Mathematics / unrestricted
2

Pricing and hedging S&P 500 index options : a comparison of affine jump diffusion models

Gleeson, Cameron, Banking & Finance, Australian School of Business, UNSW January 2005 (has links)
This thesis examines the empirical performance of four Affine Jump Diffusion models in pricing and hedging S&P 500 Index options: the Black Scholes (BS) model, Heston???s Stochastic Volatility (SV) model, a Stochastic Volatility Price Jump (SVJ) model and a Stochastic Volatility Price-Volatility Jump (SVJJ) model. The SVJJ model structure allows for simultaneous jumps in price and volatility processes, with correlated jump size distributions. To the best of our knowledge this is the first empirical study to test the hedging performance of the SVJJ model. As part of our research we derive the SVJJ model minimum variance hedge ratio. We find the SVJ model displays the best price prediction. The SV model lacks the structural complexity to eliminate Black Scholes pricing biases, whereas our results indicate the SVJJ model suffers from overfitting. Despite significant evidence from in and out-of-sample pricing that the SV and SVJ models were better specified than the BS model, this did not result in an improvement in dynamic hedging performance. Overall the BS delta hedge and SV minimum variance hedge produced the lowest errors, although their performance across moneyness-maturity categories differed greatly. The SVJ model???s results were surprisingly poor given its superior performance in out-of-sample pricing. We attribute the inadequate performance of the jump models to the lower hedging ratios these models provided, which may be a result of the negative expected jump sizes.
3

Credit Risk Modeling With Stochastic Volatility, Jumps And Stochastic Interest Rates

Yuksel, Ayhan 01 December 2007 (has links) (PDF)
This thesis presents the modeling of credit risk by using structural approach. Three fundamental questions of credit risk literature are analyzed throughout the research: modeling single firm credit risk, modeling portfolio credit risk and credit risk pricing. First we analyze these questions under the assumptions that firm value follows a geometric Brownian motion and the interest rates are constant. We discuss the weaknesses of the geometric brownian motion assumption in explaining empirical properties of real data. Then we propose a new extended model in which asset value, volatility and interest rates follow affine jump diffusion processes. In our extended model volatility is stochastic, asset value and volatility has correlated jumps and interest rates are stochastic and have jumps. Finally, we analyze the modeling of single firm credit risk and credit risk pricing by using our extended model and show how our model can be used as a solution for the problems we encounter with simple models.
4

Pricing and hedging S&P 500 index options : a comparison of affine jump diffusion models

Gleeson, Cameron, Banking & Finance, Australian School of Business, UNSW January 2005 (has links)
This thesis examines the empirical performance of four Affine Jump Diffusion models in pricing and hedging S&P 500 Index options: the Black Scholes (BS) model, Heston???s Stochastic Volatility (SV) model, a Stochastic Volatility Price Jump (SVJ) model and a Stochastic Volatility Price-Volatility Jump (SVJJ) model. The SVJJ model structure allows for simultaneous jumps in price and volatility processes, with correlated jump size distributions. To the best of our knowledge this is the first empirical study to test the hedging performance of the SVJJ model. As part of our research we derive the SVJJ model minimum variance hedge ratio. We find the SVJ model displays the best price prediction. The SV model lacks the structural complexity to eliminate Black Scholes pricing biases, whereas our results indicate the SVJJ model suffers from overfitting. Despite significant evidence from in and out-of-sample pricing that the SV and SVJ models were better specified than the BS model, this did not result in an improvement in dynamic hedging performance. Overall the BS delta hedge and SV minimum variance hedge produced the lowest errors, although their performance across moneyness-maturity categories differed greatly. The SVJ model???s results were surprisingly poor given its superior performance in out-of-sample pricing. We attribute the inadequate performance of the jump models to the lower hedging ratios these models provided, which may be a result of the negative expected jump sizes.
5

Financial and computational models in electricity markets

Xu, Li 22 May 2014 (has links)
This dissertation is dedicated to study the design and utilization of financial contracts and pricing mechanisms for managing the demand/price risks in electricity markets and the price risks in carbon emission markets from different perspectives. We address the issues pertaining to the efficient computational algorithms for pricing complex financial options which include many structured energy financial contracts and the design of economic mechanisms for managing the risks associated with increasing penetration of renewable energy resources and with trading emission allowance permits in the restructured electric power industry. To address the computational challenges arising from pricing exotic energy derivatives designed for various hedging purposes in electricity markets, we develop a generic computational framework based on a fast transform method, which attains asymptotically optimal computational complexity and exponential convergence. For the purpose of absorbing the variability and uncertainties of renewable energy resources in a smart grid, we propose an incentive-based contract design for thermostatically controlled loads (TCLs) to encourage end users' participation as a source of DR. Finally, we propose a market-based approach to mitigate the emission permit price risks faced by generation companies in a cap-and-trade system. Through a stylized economic model, we illustrate that the trading of properly designed financial options on emission permits reduces permit price volatility and the total emission reduction cost.

Page generated in 0.0892 seconds