• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CHARACTERIZATION OF THE BINDING SITE OF STE24 DURING THE -AAXING CLEAVAGE

Chelsea C St. Germain (11409800) 22 November 2021 (has links)
<p>ZMPSTE24 is a seven transmembrane domain zinc metalloprotease that resides in the ER and inner nuclear membranes of mammalian cells. The crystal structures of both the mammalian and yeast homologs, ZMPSTE24 and Ste24, respectively, were solved recently and revealed a common novel structure. Both structures contain a large chamber of mixed hydrophobicity that is capped on both sides. The canonical catalytic HExxH zinc-binding motif lies inside the chamber. Defects in the enzymatic function of human ZMPSTE24 have been shown to cause premature aging disorders. In addition to the well-defined role ZMPSTE24 and Ste24 play in the maturation of prelamin A in mammals and <b>a</b>-factor in yeast, both proteins have been proposed to play protective roles in Type 2 diabetes and viral infections by interactions with the cellular translocon. ZMPSTE24 can also be inhibited by several common HIV aspartyl protease inhibitors, possibly causing the frequent and common side-effects of these prescribed drugs. As of now, no precise location for substrate binding has been identified in either ZMPSTE24 or Ste24. Thus, the goal of this project is to localize residues in the enzyme that are important for substrate binding. The yeast homolog Ste24 was used as a model system as it functionally complements the mammalian enzyme and can be reliably cloned, overexpressed, and purified in an active form. </p> <p>Three approaches were taken to directly determine the <i>K<sub>D</sub> </i>values for substrates of Ste24. The ability to perform a direct analysis of <i>K<sub>D</sub></i> values of Ste24 mutations was successfully optimized using microscale thermophoresis. Through <i>K<sub>D</sub></i> analysis, the Ste24 mutation G255A, while completely inactive, does not prevent substrate binding. Alternatively, L441A and L410A mutations showed both an increase in thermal stability and a decrease in binding affinity, that could explain their lower activity levels. A photoaffinity labeling-based proteomics experiment was utilized to precisely locate the site of the prenyl group to a hydrophobic patch lying just under a side portal of Ste24, near K234, during the -aaXing cleavage of <b>a</b>-factor maturation. To assess the method of inhibition of HIV protease inhibitors on Ste24 the conserved aspartate mutants were explored. All mutations of these aspartate residues resulted in a severe loss of Ste24 function and instability of the protein.</p>
2

Biochemistry in Bacterioferritin

Suttisansanee, Uthaiwan January 2006 (has links)
Bacterioferritin, an iron storage protein having a 24-subunit quaternary structure, was used as a model for the study of host-guest interactions and guest encapsulation, making use of its spherical cage-like structure. A hexahistidine-affinity tag fused to the C-terminus of each bacterioferritin subunit was constructed. The C-terminus of each subunit points toward the inside of the cavity, while the N-terminus is exposed on the surface of the protein. The hexaHistag was able to form strong interactions with a nickel-nitrilotriacetic acid linked dye molecule (guest) and this interaction was used in attempts to develop a principle to control guest molecule encapsulation within the spherical cavity of the 24-mer bacterioferritin protein molecule. The procedure involved (1) subunit dissociation under acidic pH, (2) affinity controlled dye-Histag binding with exposed C-terminal hexahistidine residues and (3) reassociation of the subunits at neutral pH. The encapsulation conditions involving step 1 and 3 were studied preliminarily using laser light scattering to measure size (hydrodynamic radius) of the protein particle with apoferritin as a model system as it resembles the size and structure of bacterioferritin. In order to encapsulate guest molecules, the emptied shell of bacterioferritin was generated by site-directed mutagenesis resulting in ferroxidase- as well as heme-free bacterioferritin mutants (E18A/M52L/E94A), and these mutants were used to examine protein stability before conducting encapsulation experiments. However, wild-type bacterioferritin possessed highest stability in maintaining its multisubunit structure; hence, it was used for the encapsulation studies. It was found that 100% bacterioferritin with hexahistidine tag at the C-terminus, and a combination of 60% bacterioferritin with hexahistidine tag at the C-terminus and 40% bacterioferritin without hexahistidine tag at the C-terminus yielded similar amounts of encapsulated guest molecules. This suggested that all hexahistidine at the C-terminus were not equally available for dye molecule binding.
3

Biochemistry in Bacterioferritin

Suttisansanee, Uthaiwan January 2006 (has links)
Bacterioferritin, an iron storage protein having a 24-subunit quaternary structure, was used as a model for the study of host-guest interactions and guest encapsulation, making use of its spherical cage-like structure. A hexahistidine-affinity tag fused to the C-terminus of each bacterioferritin subunit was constructed. The C-terminus of each subunit points toward the inside of the cavity, while the N-terminus is exposed on the surface of the protein. The hexaHistag was able to form strong interactions with a nickel-nitrilotriacetic acid linked dye molecule (guest) and this interaction was used in attempts to develop a principle to control guest molecule encapsulation within the spherical cavity of the 24-mer bacterioferritin protein molecule. The procedure involved (1) subunit dissociation under acidic pH, (2) affinity controlled dye-Histag binding with exposed C-terminal hexahistidine residues and (3) reassociation of the subunits at neutral pH. The encapsulation conditions involving step 1 and 3 were studied preliminarily using laser light scattering to measure size (hydrodynamic radius) of the protein particle with apoferritin as a model system as it resembles the size and structure of bacterioferritin. In order to encapsulate guest molecules, the emptied shell of bacterioferritin was generated by site-directed mutagenesis resulting in ferroxidase- as well as heme-free bacterioferritin mutants (E18A/M52L/E94A), and these mutants were used to examine protein stability before conducting encapsulation experiments. However, wild-type bacterioferritin possessed highest stability in maintaining its multisubunit structure; hence, it was used for the encapsulation studies. It was found that 100% bacterioferritin with hexahistidine tag at the C-terminus, and a combination of 60% bacterioferritin with hexahistidine tag at the C-terminus and 40% bacterioferritin without hexahistidine tag at the C-terminus yielded similar amounts of encapsulated guest molecules. This suggested that all hexahistidine at the C-terminus were not equally available for dye molecule binding.
4

Analyzing the eukaryotic translation initiation apparatus and new approaches in affinity chromatography

Seefeldt, Jennifer 14 November 2014 (has links)
No description available.
5

Mechanismus působení nepeptidových inhibitorů HIV proteasy / Mechanism of action of non-peptide inhibitors of HIV protease

Began, Jakub January 2011 (has links)
The inhibition of HIV-1 protease plays an important role in combating HIV. Nine HIV-1 protease inhibitors have been succesfully marketed for the treatment since 1995. However, their efficiencies decrease due to the resistance development. More potent compounds with novel structural motifs and mechanisms of action are therefore still needed. Several inhibitory compounds have been reported to bind to the protease at the loci different from the active site. Interestingly, darunavir, which is the last approved inhibitor with supposedly competitive mode of action, was also suggested to bind to the flap region of the protease. Two studies discussed this alternative binding mode based on the X-ray structural and kinetic analysis, respectively. Nevertheless, it is questionable, if such a mechanism is relevant also in physiological conditions or if it is only an artifact of crystallization. Another study provided a strong evidence for the alternative binding of darunavir to highly mutated HIV-1 protease. Based on thermodynamic analysis, it was shown that two molecules of darunavir bind to the protease dimer. Surprisingly, this observation was not confirmed by the X-ray structure analysis since the inhibitor was bound only within the active site. However, this protease variant was employed in further...
6

Recent Advances in Developing Molecular Biotechnology Tools for Metabolic Engineering and Recombinant Protein Purification

Stimple, Samuel Douglas 25 May 2018 (has links)
No description available.
7

In vitro and In vivo High-throughput Analysis of Protein:DNA Interactions

Shahravan, Seyed Hesam 06 December 2012 (has links)
In this thesis, emphasis has been placed on development of new approaches for high-throughput analysis of protein:DNA interactions in vitro and in vivo. In vitro strategies for detection of protein:DNA interaction require isolation of active and soluble protein. However, current methodologies for purification of proteins often fail to provide high yield of pure and tag-free protein mainly because enzymatic cleavage reactions for tag removal do not exhibit stringent sequence specificity. Solving this problem is an important step towards high-throughput in vitro analysis of protein:DNA interactions. As a result, parts of this thesis are devoted to developing new approaches to enhance the specificity of a proteolysis reaction. The first approach was through manipulation of experimental conditions to maximize the yield of the desired protein products from enterokinase proteolysis reactions of two His-tagged proteins. Because it was suspected that accessibility of the EK site was impeded, that is, a structural problem due to multimerization of proteins, focus was based on use of denaturants as a way to open the structure, thereby essentially increasing the stoichiometry of the canonical recognition site over noncanonical, adventitious sites. Promoting accessibility of the canonical EK target site can increase proteolytic specificity and cleavage yield, and general strategies promoting a more open structure should be useful for preparation of proteins requiring endoprotease treatment. One such strategy for efficient EK proteolysis is proposed: by heterodimerizing with a separate leucine zipper, the bZIP basic region and amino-terminus can become more open and potentially more accessible to enterokinase. In vivo strategies have the advantage over their in vitro counterparts of providing a native-like environment for assessing protein:DNA interactions, yet the most frequently used techniques often suffer from high false-positive and false-negative rates. In this thesis, a new bioprobe system for high-throughput detection of protein:DNA interactions in vivo is presented. This system offers higher levels of accuracy and sensitivity as well as accessibility and ease of manipulation in comparison with existing technologies.
8

In vitro and In vivo High-throughput Analysis of Protein:DNA Interactions

Shahravan, Seyed Hesam 06 December 2012 (has links)
In this thesis, emphasis has been placed on development of new approaches for high-throughput analysis of protein:DNA interactions in vitro and in vivo. In vitro strategies for detection of protein:DNA interaction require isolation of active and soluble protein. However, current methodologies for purification of proteins often fail to provide high yield of pure and tag-free protein mainly because enzymatic cleavage reactions for tag removal do not exhibit stringent sequence specificity. Solving this problem is an important step towards high-throughput in vitro analysis of protein:DNA interactions. As a result, parts of this thesis are devoted to developing new approaches to enhance the specificity of a proteolysis reaction. The first approach was through manipulation of experimental conditions to maximize the yield of the desired protein products from enterokinase proteolysis reactions of two His-tagged proteins. Because it was suspected that accessibility of the EK site was impeded, that is, a structural problem due to multimerization of proteins, focus was based on use of denaturants as a way to open the structure, thereby essentially increasing the stoichiometry of the canonical recognition site over noncanonical, adventitious sites. Promoting accessibility of the canonical EK target site can increase proteolytic specificity and cleavage yield, and general strategies promoting a more open structure should be useful for preparation of proteins requiring endoprotease treatment. One such strategy for efficient EK proteolysis is proposed: by heterodimerizing with a separate leucine zipper, the bZIP basic region and amino-terminus can become more open and potentially more accessible to enterokinase. In vivo strategies have the advantage over their in vitro counterparts of providing a native-like environment for assessing protein:DNA interactions, yet the most frequently used techniques often suffer from high false-positive and false-negative rates. In this thesis, a new bioprobe system for high-throughput detection of protein:DNA interactions in vivo is presented. This system offers higher levels of accuracy and sensitivity as well as accessibility and ease of manipulation in comparison with existing technologies.
9

Development of a Novel Intein-Mediated Affinity Capture Platform for Production of Recombinant Proteins and Biopharmaceuticals

Taris, Joseph Edward January 2021 (has links)
No description available.

Page generated in 0.1729 seconds