Spelling suggestions: "subject:"afromontane"" "subject:"afromiontane""
1 |
Aspects of the ecology and biogeography of the forest of the northern slope of Mt. Kilimanjaro, TanzaniaGrimshaw, John M. January 1996 (has links)
No description available.
|
2 |
Impact of afforestation-induced grassland fragmentation on soil and microclimate in Groenvaly, South AfricaButler, Sarah Charlotte January 2013 (has links)
Afforestation is considered to be one of the leading land-use changes affecting ecosystem
function and diversity. This study investigates the impact of pine afforestation on
microclimate and soil in fragments of highly vulnerable Afromontane grassland at Groenvaly.
Three major challenges for afforestation research are identified as (i) the range and intricacy
of the impact of afforestation, (ii) differences in measurement and monitoring periods and
(iii) a lack of focus on biomes adjacent to plantations. The approach here aimed to address
these three areas. Air microclimate data were collected for 24 months within a plantation site,
a control grassland site and a grassland fragment using three Davis Vantage Pro2 weather
stations. Soil temperature data were logged on iButtonsTM for 18 months and soil samples
from four seasons were analysed for moisture content, nitrogen (N), nitrate, ammonium,
phosphorous (P), pH, sodium (Na), calcium (Ca), potassium (K), magnesium (Mg) and soil
organic carbon (SOC). All data were statistically analysed at within-site, between-site,
seasonal and mean scales and each analysis highlighted different conclusions. Results for the
chemicals properties of the individual grassland fragments did not exhibit within-site
variation except for K and P and between-site variation was only evident for N, nitrate,
moisture and SOC. Solar irradiance was reduced in the fragments only during winter while
SOC and P in the fragments only differed from the control grassland sites in summer and
autumn respectively. Mean values for P, pH, Na, Ca, K, SOC and soil moisture within the
fragments’ soil were between those of the control grassland and the plantation while N and
Mg values were closer to the plantation than the control grassland. Mean values for air
temperature, wind speed, solar irradiance and humidity within the fragment were closer to the
control grassland than the plantation. Soil temperatures at 2cm in the fragments were similar
to the control grassland, while temperatures at 10cm below the surface were lower than both
the control grassland and the plantation sites in winter. Maximum air temperatures in the
fragments were lowered in summer and raised in winter but minimum air temperatures were
raised in the fragments across all seasons. Results of this study show that there are different
impacts in different seasons while overall mean data indicate that the fragments’ soil is
affected, and microclimate is unaffected, by the plantation. The impact of the change in soil and microclimate in grassland fragments requires more investigation to determine if grassland
fragments are a suitable conservation strategy in pine plantations. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Geography, Geoinformatics and Meteorology / unrestricted
|
3 |
Community-level effects of fragmentation of the afromontane grassland of the escarpment region of Mpumalanga, South AfricaKamffer, Dewald 24 November 2004 (has links)
The biological diversity of the planet is at great risk as a direct result of an ever-expanding human population and its associated activities. Landscape transformation to accommodate such activities leads to habitat loss and habitat fragmentation, often creating patches of relatively undisturbed habitat within a matrix of transformed areas that are often too small too support most species previously occupying the area and as a result loses its ecological integrity. A century ago the escarpment region of Mpumalanga consisted of large open plains covered with montane grassland dissected by montane forests and riparian vegetation alongside mountain streams. Today the grasslands and forests have almost disappeared from the area, the remaining patches mostly small fragments within a matrix of exotic tree plantations which have also dried up many of the rivers and streams in the area. The natural grassland areas persisting in the region are unique in habitat characteristics and floral species composition. It is also high in plant species richness, diversity and endemicity. The high degree of isolation experienced by these floral communities poses serious threats to both the floral and faunal species that currently exits within these isolated ‘islands’, many of which are endemic to the area and at great risk of extinction. These risks call for serious collaboration between the land owners (mostly forestry companies) and conservationists to assure the practical and necessary preservation and management of this unique and crucially valuable natural resource. This study aims to provide the first step into understanding the ecological principles associated with habitat fragmentation related specifically to the mountain grassland fragments within the afforestation matrix of the escarpment region of Mpumalanga, and to create a platform for the process of collaboration between land owners and conservation agencies to assess and manage these grassland patches. The aims of Chapter 2 included: 1 To determine if any marked human-induced disturbance to the plant communities in the grassland fragments has occurred. I do this in three ways: a) To compare the plant community composition of eighteen fragments with those of six control plots outside of the plantations where no marked disturbance to the grassland can be observed. b) To determine whether the plant assemblages in the fragments can be assigned to any of the natural and intact plant communities that Matthews (1993) described from a large-scale survey of undisturbed mountain areas. c) To determine the presence of any known intruder plant species within the fragments. 2 To assign conservation priorities to the remaining grassland fragments. The results obtained from the TWINSPAN analysis revealed six alliances of plant communities grouped hierarchically into four orders and two major classes of montane grassland. The DECORANA supported these results, indicating clear differences between communities 1.1 (Eriosema salignum – Loudetia simplex grassland of the wetter North region), 1.2 (Lobelia erinus – Panicum natalense grassland of the Transitional region), 2.1 (Parinari capensis – Eragrostis racemosa grassland) and 2.2 (Helichrysum rugulosum – Eragrostis racemosa grassland). Different plant communities revealed different combinations of geological characteristics, slope, aspect and elevation. The sample plots of isolated grassland fragments and those of large unfragmented areas compare well with each other - the species richness of experimental and control plots do not differ significantly. Also, the species composition of plots from the Wetter North, Transitional and Drier South regions show more variation than is evident between experimental and control plots. There was also good qualitative comparisons (quantitative comparisons were not possible as a results of sampling and analytic discrepancies) between the sample plots used in this study and the plant communities described by Graham Deall and Wayne Matthews. Some evidence of exotic invader plants was found within the sample plots, notably Pteridium aquilinum. Fortunately such species were localized in their distribution and restricted to community 1.1.2.2. The aims of Chapter 3 included the following: 1. To compare the faunal biodiversity in grassland fragments within afforested areas to that of control plots in large, relatively undisturbed grassland areas. 2. To determine to which degree the Coleoptera, Orthoptera, Lepidoptera and bird communities reflect recognized plant communities, and are restricted to specific plant communities. 3. To compare the habitat specificity (degree of stenotopy) of the different taxonomic groups and trophic levels of animals. 4. To make recommendations for the conservation of the Afromontane grassland fauna in the remaining grassland fragments in afforested areas. The sampling of 15602 beetles, grasshoppers and crickets were collected, with an average of 3900 per sampling period, revealed unique combinations of animal species linked to the different plant communities mentioned above. Significant differences were evident from the one-way analyses of similarity (ANOSIM) used to compare the faunal community structures of sample plots of the Wetter North, Transitional and Dryer South regions. The faunal community structures of the experimental and control plots of the Wetter North and Transitional regions did not differ significantly. The indexes of habitat specificity (fractions of species constricted to certain plant communities) indicated that the plants and butterflies were more habitat-specific than the Coleoptera, Orthoptera and Birds. The carnivorous insects showed a surprisingly high level of habitat specificity compared to the relatively low level of the phytophagous insects. This surprising trend was also evident in various insect families – Acrididae, Scarabaeidae and Nymphalidae had relatively high levels of habitat specificity compared to that of the Curculionidae and the Chrysomelidae. Chapter 4 has the following aims: 1. To quantify the effect of several environmental characteristics (slope, rainfall, geology, etc) on the faunal community structure of the grassland fragments. 2. To quantify the effects of degree of isolation on species richness, species diversity and assemblage structure of plants, insects and birds in grassland remnants. 3. To test for the effects of edges on the extant insect biodiversity in the grassland fragments inside plantations. 4. To quantify the effects of fragment size on species richness, species diversity and assemblage structure of plants, insects and birds. 5. To rank the grassland fragments in an order of conservation importance using factors such as biodiversity and uniqueness of the floral community. No clear relationship between fragment size and area sampled and species richness and/or – diversity was evident from the results. Indeed, the smallest area sampled had the fourth highest species richness and the largest area sampled had the fourth lowest species richness and species diversity. Regressions results did not show any significant effects of the geographical area sampled on the biodiversity estimates of the fragments. Therefore I assume that the estimates arrived at for the area sampled within each fragment is representative of that of the complete fragment. The Detrended correspondence analysis (DCA - using square root transformed abundance data) used, indicated the need to perform a gradient analysis using a redundancy analysis (RDA). The permutation test resulting from this analysis revealed a non-significant value for the first canonical axis, but a significant value for the first four canonical axes together. The ten species contributing the most to above-mentioned result include two Scarabs (Scarabaeidae – Aphodius sp 1 and Melolonthinae sp 2), two weevils (Curculionidae – Eudraces sp 1 and Curculionidae sp 42), one leaf beetle (Chrysomelidae – Asbecesta near capensis), one darkling beetle (Tenebrionidae – Lagria sp 1), one longhorn beetle (Cerambycidae – Anubis scalaris), one jewel beetle (Buprestidae – Buprestidae sp 1), one ladybird (Coccinellidae – Coccinellidae sp 4) and one Dor beetle (Bolboceratidae – Mimobolbus maculicollis). Of these ten beetles only three are not restricted to the Drier South Region (Anubis scalaris – Wetter North and Drier South, Lagria sp 1 – throughout and Eudraces sp 1 – throughout). The associated stepwise multivariate regression showed distance to the nearest grassland to be the only environmental characteristic to significantly influence the faunal community structure of the fragments. Slope was the environmental characteristic with the smallest effect. In contrast with the results from redundancy analysis, the analysis of similarity (ANOSIM) and t-tests did not reveal significant differences in the faunal community structure of fragments closer to – and further than one kilometre from the nearest grassland neighbour. This trend was the most evident for fragments of the Transitional region and the least obvious for the fragments of the study area as a whole. The SIMPER analysis showed that of the ten species contributing most to the dissimilarity between insect communities of fragments closer/further than one kilometre from the nearest grassland neighbour, eight were also in the group of ten species characterizing the faunal communities of either/both groups (contributing towards similarity). The insect communities found at 10, 20 and 50 metres from the edge of the grassland fragments did not differ significantly, nor did an ANOSIM performed separately for each of the three major plant communities reveal any significant edge-related differences. The ANOVA results for the individual species revealed only one (of 57 - in the Transitional region) having a distribution that differs significantly with respect to distance from the habitat edge:Eremnus sp. 2 was only found at 10 metres from the edge of the fragment, close to the plantations. Of all the groups, only bird diversity, bird richness and general faunal diversity showed significant relationships with fragment size. There was a non-significant trend for insects to biodiversity to be reduced in very small fragments. Most of the botanical data exhibited no significant relationship with fragment size. The species composition of control sites were not found to be significantly different from that of experimental fragments for all the faunal groups pooled together or for the fragments of the Transitional Region and the Wetter North Region. Using the four separate scores for birds, butterflies, beetles and grasshoppers, each fragment was assigned a total conservation score. The twenty-four fragments were then ranked in order of conservation importance. Fragments of the Wetter North had an average score of 65.3, fragments of The Transitional Region 66.6 and fragments of the Drier South 52.3. The results relating to this study has lead to the following conclusions: o It is concluded that afforestation and habitat fragmentation have not significantly impacted on the flora of the montane grassland of the study area since many of the grassland fragments surrounded by plantations are still easily identifiable as natural communities, described by Matthews and Deall in broader-scale surveys in the past. Also, no obvious invader – or disturbed plant communities are discernible even though some of them have been isolated for as long as 40 years. o The plant communities of conservation importance described by Matthews coincide with the important communities recognized in this study. Rare and endangered plant species, as well as species endemic to the region, are more often than not found on the scarce Black Reef quartzite of the region, which is more evident to the Northern part of the study area. Communities 1.1 and 1.2.2 are therefore of particular conservation importance, not only as a result of their scare geological base, but also because of the high risk associated with the few grassland examples left of these communities. o The high levels of habitat specificity of many of the taxonomic and trophic faunal groups indicate that many of the invertebrate taxa are probably endemic to the region, and that the plant endemicity encountered in the Afromontane grasslands is reflected by a similar degree of animal endemicity. o The similarity in faunal assemblages and diversity between isolated fragments and large areas of grassland emphasizes the conservation importance of the fragments, even when smaller than 5 Ha in extent. o Appropriate management of the grassland fragments within the plantations is therefore important for the conservation of the plant and animal taxa encountered there. Experimental management involving grazing, mechanical cutting, grazing and burning is needed to decide on an efficient management regime, so that the grassland biodiversity can be conserved in a planned way. Such work will also allow empirical testing the efficiency of the indicator species suggested above. o Isolated grassland fragments in this study represent largely unaffected natural plant and insect communities, differing little from large unfragmented grasslands in the study area. o Fragments found within afforested areas therefore have a high conservation importance, since they represent ‘natural’ grassland areas and are often the only representative of a particular plant community left in the area. o No significant edge effects on the faunal communities 10, 20 and 50 metres from the fragments’ edges exist as a result of afforestation in the area. o Birds (and probably other vertebrates in these grasslands) are affected by fragment size, while invertebrates are much less affected and plants do not show any measurable effect of fragment size. o Fragments in the wetter northern part of the study area, characterized by high levels of plant endemicity, have a higher conservation importance as judged by faunal biodiversity. / Dissertation (MSc (Zoology and Entomology))--University of Pretoria, 2005. / Zoology and Entomology / unrestricted
|
4 |
The Impact of Edge Effects & Matrix Restoration on Dung Beetle Community Structure & Ecosystem FunctionBarnes, Andrew David January 2011 (has links)
Land-use change has become a force of global importance and has gained status as the most important driver of ecosystem degradation. The resulting creation of habitat edges has pervasive impacts on the distribution and persistence of species in forest ecosystems. Responses of species to edge effects can be highly dependent on ‘response’ traits, which may in turn co-vary with ‘effect’ traits that determine rates of ecosystem functioning. Therefore, non-random loss of species due to traits conferring higher susceptibility to extinction may also result in the loss of functionally-important species across a habitat edge gradient. Likewise, response and effect traits may be important in determining reassembly of communities in regenerating habitats, which may provide insight into potential scenarios of functional responses to restoration efforts. To test for potential off-site effects of adjacent matrix habitat restoration on dung beetle communities, I compared dung beetle community structure and species trait composition across Afromontane forest edges adjacent to degraded and regenerating matrix habitat at Ngel Nyaki forest reserve in Nigeria. I also measured dung removal rates across habitat edge gradients to investigate the relative off-site impacts of matrix restoration on dung beetle-mediated ecosystem processes. I found significant effects of adjacent matrix condition on edge response functions in dung beetle abundance, species distributions, and trait composition. Beetle abundances were markedly higher in forests adjacent to regenerating matrix, whereas the largest differences in trait composition were found between degraded and regenerating matrix habitat, indicating the presence of ecological filtering processes in these areas. Furthermore, I found that species traits determined community structural responses to environmental change and this had strong flow-on effects to rates of dung removal. Shifts in trait distributions explained dung removal rates above and beyond total beetle mass, suggesting that neutral processes alone could not explain functional efficiency. In particular, habitat regeneration resulted in the assembly of communities with high total beetle mass and on-average smaller beetles, which was optimal for functional efficiency. In conclusion, the restoration of adjacent matrix habitat was shown to effectively mitigate edge effects on dung beetle community structure resulting in the re-establishment of important associated ecosystem processes.
|
5 |
The plight of trees in disturbed forest: conservation of Montane Trees, NigeriaThia, Joshua A. Y. W. January 2014 (has links)
The montane forests of Africa represent some of the Earth's most diverse and threatened ecosystems. In particular, those in West Africa have received comparatively little attention from scientists in terms of understanding the ecology and biodiversity of their species. This thesis wishes to understand genetic and ecological factors that underpin the long-term survival of selected tree species (Cordia millenii, Entandrophragma angolense, Lovoa trichilioides) in the montane forests of the Mambilla Plateau, Nigeria. The results obtained here provide a strong foundation for future work that wishes to preserve the diverse forests of this region.
|
6 |
The role of seed dispersal, seed predation and drought in the restoration of Ngel Nyaki Forest, Nigeria.Roselli, Sasha Mahani January 2014 (has links)
Abstract
The restoration of degraded landscapes has become one of our most valuable tools for conservation, however there are many factors which can restrict natural regeneration and impede active restoration attempts. The purpose of this study was to investigate three key processes which commonly limit the establishment of forest tree species into abandoned pasture in tropical forests: i) dispersal limitation, ii) seed predation, and iii) competition from the grass sward.
Seed dispersal
I identified 59 species of birds that were using the grassland habitat. Through 216 hours of focal tree observations I established that isolated trees in the grassland that had larger canopies, and those that were providing a food source (i.e. flowers or fruit) had significantly higher bird visitation rates and average stay lengths. I found evidence of the “perch effect” as patches of remnant trees encouraged more birds into areas of grassland, and the density of seedlings under tree canopies was significantly positively correlated with bird visitations. 95% of the seedlings found beneath tree canopies in grassland were of a different species to that of the tree canopy above them, demonstrating the dispersal of seeds from elsewhere into these microhabitats. 98% of these seedlings are grassland or forest edge species showing forest core species are still dispersal or microsite limited despite the effect of these trees.
Seed predation
Removal rates of seeds from experimentally laid out seed piles varied among seed species, the habitat the pile was in, and the predator guild able to access the piles. Preliminary results indicate that these trends are driven by the ecology of the seed predator. Removal of seeds by vertebrates was highest in the core forest, while ant predation was constant across all habitats. Vertebrates removed the larger seeds (Entandrophragma angolense and Sterculia tragacantha) while ants preferred the smaller Celtis gomphophylla and Croton macrostachyus. Overall predation rates in grassland were lower than those in the forest, and the presence of remnant trees did not influence predation rates, a positive sign for regeneration and the survival of seeds dispersed into these areas.
Competition from the grass sward
While the grass sward provides shade for seedlings of forest tree species it is also a harsh environment for them, as the grass competes with seedlings for water. Removing the grass and covering planted seedlings with artificial shading structures significantly increased both the survival and growth of these seedlings.
Recommendations
From this study I was able to make recommendations for a low input restoration program at Ngel Nyaki. Planting seedlings in small „islands‟ takes advantage of the natural increase in dispersal of seeds under isolated trees, while low seed predation rates increase the chance of survival of these seeds to germination. Planting these seedlings under shade will lead to increases both their growth rates and their survival. Once the secondary forest develops, under-planting seedlings of core forest trees will introduce them to the system, as the natural establishment of these seeds appears to be limited in the current environment. This study has also served to remind us how little we know about this particular forest-grassland system, and has led to the development of ideas for further investigations into several more aspects of regeneration.
|
7 |
Forest eternal? Endemic butterflies of the Bamenda Highlands, Cameroon, avoid close-canopy forest / Forest eternal? Endemic butterflies of the Bamenda Highlands, Cameroon, avoid close-canopy forestTROPEK, Robert January 2008 (has links)
I studied habitat preferences of three common endemic butterflies in the Bamenda Highlands, Cameroon. Assuming that the life history traits of taxa with limited geographic distribution reflect past habitat conditions within their ranges, the history and conservation of West African mountain landscape is discussed.
|
8 |
The impact of forest on pest damage, pollinators and pollination services in an Ethiopian agricultural landscapeSamnegård, Ulrika January 2016 (has links)
The distribution of wild biodiversity in agroecosystems affect crop performance and yield in various ways. In this thesis I have studied the impact of wild biodiversity, in terms of trees and forest structures, on crop pests, pollinators and the pollination services provided in a heterogeneous landscape in southwestern Ethiopia. Coffee, Coffea arabica, is a forest shrub native to Ethiopia and is grown in most wooded areas in the landscape where I conducted my studies. Wild coffee is still found in remote parts of the forests in the landscape. For my first paper, I surveyed pest damage on coffee in coffee forest sites, where some sites were situated in continuous forest and some in isolated forest patches. I found the variation in pest damage frequency to mainly be among coffee plants within a site, rather than among sites, which indicates the importance of local processes. However, some pests were clearly connected to the forest habitat, such as the olive baboon. In my second study, I surveyed pollinators visiting coffee flowers across a gradient of shade-tree structures. I found the semi-wild honeybee to be the dominating flower visitor. The abundance of the honeybee was not related to shade-tree structures, but to amount of coffee flower resources in the site. On the other hand, other pollinators, which included other bee species and hoverflies, were positively affected by more shade trees in the site. In my third study I investigated how the forest cover affected local bee communities in the agricultural landscape. Moreover, I investigated if this relationship differed between the dry and rainy season. The distribution of food resources for bees changes between the seasons, which may affect the bees. Most trees, fruit trees and coffee, which are patchy resources, flowers in the dry season, whereas most herbs and annual crops, which are more evenly spread resources, flowers during the rainy season. I found a clear turnover in bee species composition between the dry and rainy season, with more mobile species in the dry season. Increased forest cover in the surrounding landscape had a positive impact on bee abundance and species richness. However, the impact did not change between seasons. In my fourth study I evaluated the pollination success and pollen limitation of a common oil crop in the landscape in relation to forest cover. I found severe pollen limitation across the landscape, which may be related to the observed low bee abundances. The pollen limitation was not related to surrounding forest cover. In conclusion, I have found the forest and wooded habitats to impact several mobile animals and pathogens in our study landscape, which in turn affect people. However, there is large complexity in nature and general relationships between forest structures and all crop related organisms may be unlikely to find. Various species are dependent on different resources, at different spatial scales and are interacting with several other species. To develop management strategies for increased pollination services, for reduced pest damage or for conservation in the landscape, more species-specific knowledge is needed. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
|
9 |
Afromontane avian assemblages and land use in the Bale Mountains of Ethiopia : patterns, processes and conservation implicationsMitiku, Addisu Asefa 11 1900 (has links)
Although protected areas have been used as principal conservation tools, most of them are suffering from human-induced threats. Consequently, a good understanding of such human-driven threats on biodiversity and identifying early warning systems for habitat change in protected areas is necessary for effective conservation of natural resources. To examine the impact of human disturbance on avifaunal assemblages and to assess the potential application of birds as bioindicators of forest health monitoring in the Afromontane forest of the Bale Mountains of Ethiopia, I recorded birds and habitat variables in three protected and three unprotected forests using a point transect method in 2009 and 2012. The two land use types differ in disturbance levels (higher in the unprotected areas), vegetation structure and bird assemblages. Species richness of entire bird guild, open woodland and open land habitat guilds, granivore and insectivore feeding guilds, and shrub layer and ground layer foraging substrate guilds of birds were significantly higher in the unprotected areas than the protected areas. Abundances of guilds of birds mostly followed a similar trend with species richness. However, densities of overall and forest-specialist bird guilds were higher in the protected area and vice versa for the other guilds. In general, the protected area assemblages were dominated by forest-specialist species, while those of the unprotected areas were dominated by openland and shrubland species. The implication is that disturbance had caused encroachment of non-native species (openland, open woodland and shrub land species) while negatively affecting native species (forest species, particularly tree canopy foragers). These assemblage differences are linked to changes in vegetation structure caused by disturbance. Thus, further forest degradation in the protected area should be avoided in order to maintain native/forest-specialist species. Given the differences in bird assemblages between the two land use types, there is a high likelihood that bioindicator species (i.e. indicator species - those 'characteristic' of a particular habitat - and detector species - those occurring in the different habitats considered but with moderate indication value) can be identified, therefore providing a useful tool to monitor ecosystem health of the forests. Four and nine species were identified as appropriate indicator species (i.e. species with indicator values > 60% and fulfilling biological and niche history criteria used in selection) in the protected and unprotected areas, respectively. In addition, nine species were identified as detectors of habitat change in the protected areas. These bioindicators provide a useful tool for managers of Afromontane forest in the Bale Mountains, as well as similar habitats elsewhere, for long term monitoring of ecosystem health of the forests. / Dissertation (MSc)--University of Pretoria, 2013. / DST/NRF Centre of Excellence / Zoology and Entomology / MSc / Unrestricted
|
10 |
Vegetation ecology of the Soutpansberg and Blouberg area in the Limpopo ProvinceMostert, T.H.C. (Theodorus Hendrik Cornelis) 16 March 2010 (has links)
The fast growing local human population, especially through immigration from countries north of South Africa, is placing the Soutpansberg and Blouberg areas under increasing pressure. The insatiable demand for more arable land within these agriculturally marginal and semi-arid areas is leading to severe degradation of the remaining natural resources. The Soutpansberg–Blouberg region has been recognized as a Centre of Endemism and is regarded as a region of exceptionally high biological diversity. The Soutpansberg Conservancy and the Blouberg Nature Reserve reveal extremely rich diversities of plant communities relative to the sizes of these conservation areas. The Major Vegetation Types and plant communities of the Soutpansberg Centre of Endemism are described in detail with special reference to the Soutpansberg Conservancy and the Blouberg Nature Reserve. Phytosociological data from 466 sample plots were ordinated using a Detrended Correspondence Analysis (DECORANA) and classified using Two–way Indicator Species Analysis(TWINSPAN). The resulting classification was further refined with table–sorting procedures based on the Braun–Blanquet floristic–sociological approach of vegetation classification using MEGATAB. Eight Major Vegetation Types were identified and described as Eragrostis lehmanniana var. lehmanniana–Sclerocarya birrea subsp. caffra BNR Northern Plains Bushveld, Euclea divinorum–Acacia tortilis BNR Southern Plains Bushveld, Englerophytum magalismontanum–Combretum molle BNR Mountain Bushveld, Adansonia digitata–Acacia nigrescens Soutpansberg Arid Northern Bushveld, Catha edulis–Flueggia virosa Soutpansberg Moist Mountain Thickets, Diplorhynchus condylocarpon–Burkea africana Soutpansberg Leached Sandveld, Rhus rigida var. rigida–Rhus magalismontanum subsp. coddii Soutpansberg Mistbelt Vegetation and Xymalos monospora–Rhus chirendensis Soutpansberg Forest Vegetation. Plant communities of each of the Major Vegetation Types are described. The primary ecological drivers of the event-driven and the classic climax vegetation types are discussed and management recommendations are made for effective conservation of these last remaining pockets of wilderness. The available data supports the recognition of the region as an important Centre of Plant Endemism and Biological Diversity requiring conservation attention. Copyright / Thesis (PhD)--University of Pretoria, 2010. / Plant Science / unrestricted
|
Page generated in 0.0424 seconds