• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uma arquitetura para agentes inteligentes com personalidade e emoção / An architecture for intelligent agents with personality and emotion

Bressane Neto, Ary Fagundes 02 June 2010 (has links)
Uma das principais motivações da Inteligência Artificial no contexto dos sistemas de entretenimento digital é criar personagens adaptáveis a novas situações, pouco previsíveis, com aprendizado rápido, memória de situações passadas e uma grande diversidade de comportamentos consistente e convincente ao longo do tempo. De acordo com recentes estudos desenvolvidos nos campos da Neurociência e da Psicologia, a capacidade de resolução de problemas não está unicamente atrelada à facilidade na manipulação de símbolos, mas também à exploração das características do ambiente e à interação social, que pode ser expressa na forma de fenômenos emocionais. Os resultados desses estudos confirmam o papel fundamental que cumprem a personalidade e as emoções nas atividades de percepção, planejamento, raciocínio, criatividade, aprendizagem, memória e tomada de decisão. Quando módulos para a manipulação de personalidade e emoções são incorporados à teoria de agentes, é possível a construção de Agentes com Comportamento Convincente (Believable Agents). O objetivo principal deste trabalho é desenvolver e implementar uma arquitetura de agentes inteligentes para construir personagens sintéticos cujos estados afetivos influenciam em suas atividades cognitivas. Para o desenvolvimento de tal arquitetura utilizou-se o modelo BDI (Beliefs, Desires e Intentions) como base e aos módulos existentes em uma implementação desse modelo foi incluído um Módulo Afetivo. Esse Módulo Afetivo é constituído por três submódulos (Personalidade, Humor e Emoção) e deve impactar nas atividades cognitivas de percepção, memória e tomada de decisão do agente. Duas provas de conceito (experimentos) foram construídas : a simulação do problema do ``Dilema do Prisioneiro Iterado\'\' e a versão computadorizada do ``Jogo da Memória\'\'. A construção desses experimentos permitiu avaliar empiricamente a influência da personalidade, humor e emoção nas atividades cognitivas dos agentes, e consequentemente no seu comportamento. Os resultados evidenciam que a utilização da nova arquitetura permite a construção de agentes com comportamentos mais coerentes, adaptativos e cooperativos quando comparados aos de agentes construídos com arquiteturas cujas atividades cognitivas não consideram o estado afetivo, e também produz um comportamento mais próximo de um agente humano que de um comportamento ótimo ou aleatório. Essa evidência de sucesso, apresentada nos resultados, mostra que os agentes construídos com a arquitetura proposta nessa dissertação indicam um avanço na direção do desenvolvimento dos Agentes com Comportamento Convincente. / One of the main motivations of Artificial Intelligence in the context of the digital entertainment systems is to create characters that are adaptable to new situations, unpredictable, fast learners, enable with memory of past situations and a variety of consistent and convincing behavior over time. According to recent studies conducted in the fields of Neuroscience and Psychology, the ability to solve problems is not only related to the capacity to manipulate symbols, but also to the ability to explore the environment and to engage into social interaction, which can be expressed as emotional phenomena. The results of these studies confirm the key role the personality and emotions play in the activities of perception, attention, planning, reasoning, creativity, learning, memory and decision making. When modules for handling personality and emotion, are incorporated in a theory of agents, it is possible to build Believable Agents. The main objective of this work is to develop and implement an intelligent agent architecture to build synthetic characters whose affective states influence their cognitive activities. To develop such architecture the BDI model (Beliefs, Desires and Intentions) was used as a basis, to which an Affective Module was included. The Affective Module consists of three sub-modules (Personality, Mood and Emotion), which influence the cognitive activities of perception, memory and decision making. Finally, two proofs of concept were built: the simulation of the problem of ``Iterated Prisoner\'s Dilemma\'\' and the computerized version of the ``Memory Game.\'\' The construction of these experiments allowed to evaluate empirically the influence of personality, mood and emotion in cognitive activities of agents and consequently in their behavior. The results show that using the proposed architecture one can build agents with more consistent, adaptive and cooperative behaviors when compared to agents built with architectures whose affective states do not influence their cognitive activities. It also produces a behavior that is closer to a human user than that of optimal or random behavior. This evidence of success, presented in the obtained results, show that agents built with the proposed architecture indicate an advance towards the development of Believable Agents.
2

Uma arquitetura para agentes inteligentes com personalidade e emoção / An architecture for intelligent agents with personality and emotion

Ary Fagundes Bressane Neto 02 June 2010 (has links)
Uma das principais motivações da Inteligência Artificial no contexto dos sistemas de entretenimento digital é criar personagens adaptáveis a novas situações, pouco previsíveis, com aprendizado rápido, memória de situações passadas e uma grande diversidade de comportamentos consistente e convincente ao longo do tempo. De acordo com recentes estudos desenvolvidos nos campos da Neurociência e da Psicologia, a capacidade de resolução de problemas não está unicamente atrelada à facilidade na manipulação de símbolos, mas também à exploração das características do ambiente e à interação social, que pode ser expressa na forma de fenômenos emocionais. Os resultados desses estudos confirmam o papel fundamental que cumprem a personalidade e as emoções nas atividades de percepção, planejamento, raciocínio, criatividade, aprendizagem, memória e tomada de decisão. Quando módulos para a manipulação de personalidade e emoções são incorporados à teoria de agentes, é possível a construção de Agentes com Comportamento Convincente (Believable Agents). O objetivo principal deste trabalho é desenvolver e implementar uma arquitetura de agentes inteligentes para construir personagens sintéticos cujos estados afetivos influenciam em suas atividades cognitivas. Para o desenvolvimento de tal arquitetura utilizou-se o modelo BDI (Beliefs, Desires e Intentions) como base e aos módulos existentes em uma implementação desse modelo foi incluído um Módulo Afetivo. Esse Módulo Afetivo é constituído por três submódulos (Personalidade, Humor e Emoção) e deve impactar nas atividades cognitivas de percepção, memória e tomada de decisão do agente. Duas provas de conceito (experimentos) foram construídas : a simulação do problema do ``Dilema do Prisioneiro Iterado\'\' e a versão computadorizada do ``Jogo da Memória\'\'. A construção desses experimentos permitiu avaliar empiricamente a influência da personalidade, humor e emoção nas atividades cognitivas dos agentes, e consequentemente no seu comportamento. Os resultados evidenciam que a utilização da nova arquitetura permite a construção de agentes com comportamentos mais coerentes, adaptativos e cooperativos quando comparados aos de agentes construídos com arquiteturas cujas atividades cognitivas não consideram o estado afetivo, e também produz um comportamento mais próximo de um agente humano que de um comportamento ótimo ou aleatório. Essa evidência de sucesso, apresentada nos resultados, mostra que os agentes construídos com a arquitetura proposta nessa dissertação indicam um avanço na direção do desenvolvimento dos Agentes com Comportamento Convincente. / One of the main motivations of Artificial Intelligence in the context of the digital entertainment systems is to create characters that are adaptable to new situations, unpredictable, fast learners, enable with memory of past situations and a variety of consistent and convincing behavior over time. According to recent studies conducted in the fields of Neuroscience and Psychology, the ability to solve problems is not only related to the capacity to manipulate symbols, but also to the ability to explore the environment and to engage into social interaction, which can be expressed as emotional phenomena. The results of these studies confirm the key role the personality and emotions play in the activities of perception, attention, planning, reasoning, creativity, learning, memory and decision making. When modules for handling personality and emotion, are incorporated in a theory of agents, it is possible to build Believable Agents. The main objective of this work is to develop and implement an intelligent agent architecture to build synthetic characters whose affective states influence their cognitive activities. To develop such architecture the BDI model (Beliefs, Desires and Intentions) was used as a basis, to which an Affective Module was included. The Affective Module consists of three sub-modules (Personality, Mood and Emotion), which influence the cognitive activities of perception, memory and decision making. Finally, two proofs of concept were built: the simulation of the problem of ``Iterated Prisoner\'s Dilemma\'\' and the computerized version of the ``Memory Game.\'\' The construction of these experiments allowed to evaluate empirically the influence of personality, mood and emotion in cognitive activities of agents and consequently in their behavior. The results show that using the proposed architecture one can build agents with more consistent, adaptive and cooperative behaviors when compared to agents built with architectures whose affective states do not influence their cognitive activities. It also produces a behavior that is closer to a human user than that of optimal or random behavior. This evidence of success, presented in the obtained results, show that agents built with the proposed architecture indicate an advance towards the development of Believable Agents.
3

Agentes Inteligentes com Foco de Aten??o Afetivo em Simula??es Baseadas em Agentes

Signoretti, Alberto 17 August 2012 (has links)
Made available in DSpace on 2014-12-17T14:55:05Z (GMT). No. of bitstreams: 1 AlbertoS_TESE.pdf: 2680432 bytes, checksum: d2f2fd640ed137e3f09bc41cd4afd853 (MD5) Previous issue date: 2012-08-17 / Simulations based on cognitively rich agents can become a very intensive computing task, especially when the simulated environment represents a complex system. This situation becomes worse when time constraints are present. This kind of simulations would benefit from a mechanism that improves the way agents perceive and react to changes in these types of environments. In other worlds, an approach to improve the efficiency (performance and accuracy) in the decision process of autonomous agents in a simulation would be useful. In complex environments, and full of variables, it is possible that not every information available to the agent is necessary for its decision-making process, depending indeed, on the task being performed. Then, the agent would need to filter the coming perceptions in the same as we do with our attentions focus. By using a focus of attention, only the information that really matters to the agent running context are perceived (cognitively processed), which can improve the decision making process. The architecture proposed herein presents a structure for cognitive agents divided into two parts: 1) the main part contains the reasoning / planning process, knowledge and affective state of the agent, and 2) a set of behaviors that are triggered by planning in order to achieve the agent s goals. Each of these behaviors has a runtime dynamically adjustable focus of attention, adjusted according to the variation of the agent s affective state. The focus of each behavior is divided into a qualitative focus, which is responsible for the quality of the perceived data, and a quantitative focus, which is responsible for the quantity of the perceived data. Thus, the behavior will be able to filter the information sent by the agent sensors, and build a list of perceived elements containing only the information necessary to the agent, according to the context of the behavior that is currently running. Based on the human attention focus, the agent is also dotted of a affective state. The agent s affective state is based on theories of human emotion, mood and personality. This model serves as a basis for the mechanism of continuous adjustment of the agent s attention focus, both the qualitative and the quantative focus. With this mechanism, the agent can adjust its focus of attention during the execution of the behavior, in order to become more efficient in the face of environmental changes. The proposed architecture can be used in a very flexibly way. The focus of attention can work in a fixed way (neither the qualitative focus nor the quantitaive focus one changes), as well as using different combinations for the qualitative and quantitative foci variation. The architecture was built on a platform for BDI agents, but its design allows it to be used in any other type of agents, since the implementation is made only in the perception level layer of the agent. In order to evaluate the contribution proposed in this work, an extensive series of experiments were conducted on an agent-based simulation over a fire-growing scenario. In the simulations, the agents using the architecture proposed in this work are compared with similar agents (with the same reasoning model), but able to process all the information sent by the environment. Intuitively, it is expected that the omniscient agent would be more efficient, since they can handle all the possible option before taking a decision. However, the experiments showed that attention-focus based agents can be as efficient as the omniscient ones, with the advantage of being able to solve the same problems in a significantly reduced time. Thus, the experiments indicate the efficiency of the proposed architecture / Simula??es baseadas em agentes cognitivos podem se tornar tarefas computacionalmente intensivas, especialmente quando o ambiente de simula??o ? um sistema complexo. Este panorama se torna pior na medida em que restri??es de tempo s?o adotadas. Simula??es desse tipo seriam beneficiadas por um mecanismo que melhorasse o modo pelo qual os agentes percebem e reagem a mudan?as nesses tipos de ambiente. Ou seja, uma abordagem para melhorar a efici?ncia (desempenho e acur?cia) no processo de decis?o de agentes aut?nomos em uma simula??o, seria ?til. Em ambientes complexos e repletos de vari?veis, ? poss?vel que nem todas as informa??es dispon?veis para o agente sejam necess?rias para o seu processo de decis?o, dependendo, ? claro, da tarefa que esteja sendo executada. O agente precisaria filtrar as informa??es que lhe chegam, assim como n?s o fazemos com o nosso foco de aten??o. Com a utiliza??o de um foco de aten??o, somente as informa??es importantes ao contexto de execu??o do agente s?o percebidas (processadas cognitivamente), o que pode melhorar o processo de decis?o. A arquitetura proposta neste trabalho apresenta uma estrutura de agentes cognitivos dividida em duas partes: 1) uma parte principal contendo o racioc?nio/planejamento, o conhecimento e o estado afetivo do agente e, 2) um conjunto de comportamentos que ser?o acionados pelo planejamento com o intuito de atingir os objetivos do agente. Cada um desses comportamentos possui um foco de aten??o ajust?vel dinamicamente durante o tempo de execu??o do agente, de acordo com a varia??o do seu estado afetivo. O foco de aten??o presente em cada comportamento ? dividido em foco qualitativo, o qual ? respons?vel pela qualidade dos dados percebidos, e foco quantitativo, o qual ? respons?vel pela quantidade dos dados percebidos. Desse modo, o comportamento ser? capaz de filtrar as informa??es enviadas pelos sensores dos agentes e construir uma lista de elementos, contendo somente as informa??es necess?rias ao agente, dependendo do contexto do comportamento em execu??o no momento. Com base no mecanismo de foco de aten??o humano, o agente tamb?m ? dotado de um estado afetivo. O estado afetivo do agente ? baseado nas teorias humanas da emo??o, humor e personalidade. Esse modelo atua como base para o mecanismo de ajuste cont?nuo do foco de aten??o do agente, tanto da parte qualitativa, como da parte quantitativa. Com esse mecanismo, o agente pode ajustar o seu foco de aten??o durante a execu??o do comportamento, de forma a tornar-se mais eficiente perante as mudan?as ocorridas no ambiente. A arquitetura proposta pode ser utilizada de forma bastante flex?vel. O foco de aten??o pode trabalhar tanto de forma fixa (onde nem o foco qualitativo e nem o quantitativo variam), quanto com diferentes combina??es entre a varia??o ou n?o dos focos qualitativo e quantitativo. A arquitetura foi desenvolvida sobre uma plataforma para agentes BDI, mas o seu projeto permite que seja usada em qualquer outro tipo de agente, pois as altera??es s?o feitas apenas no n?vel da percep??o do agente. Para avaliar a contribui??o do trabalho, uma s?rie extensa de experimentos foram realizados sobre uma simula??o baseada em agentes num cen?rio de inc?ndio. Nas simula??es, agentes utilizando a arquitetura proposta neste trabalho s?o comparados com agentes similares (com o mesmo modelo de racioc?nio), por?m capazes de processar todas as informa??es que lhes s?o enviadas pelo ambiente (agentes oniscientes). Intuitivamente, ? de se imaginar os agentes oniscientes seriam mais eficiente que os com filtros de percep??o, uma vez que eles podem processar todas as op??es poss?veis antes de tomar uma decis?o. Por?m, os experimentos mostram que os agentes com foco de aten??o podem ser t?o eficientes quanto os oniscientes, levando vantagem por?m na capacidade de resolverem o mesmo problema em um tempo significativamente menor. Os experimentos indicam, portanto, a efici?ncia da arquitetura proposta

Page generated in 0.0833 seconds