• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterization of sheep and goat production systems amongst small-scale farmers in the Southern Free State

Kumalo, Molefi. Petrus. January 2014 (has links)
Thesis ( M. Tech. (Agriculture )) - Central University of Technology, Free State, 2014
12

Farm planning for a typical crop-livestock integrated farm : an application of a mixed integer linear programming model

Ghebretsadik, Amanuel Habte 12 1900 (has links)
Assignment (MSc) -- University of Stellenbosch, 2004. / ENGLISH ABSTRACT: In an integrated crop-livestock production farm, the profitability and sustainability of farm production is dependent on the crop rotation strategy applied. Crop rotations have historically been applied to maintain long-term profitability and sustainabiliry of farming production by exploiting the jointly beneficial interrelationships existing among different crop types and the animal production activity. Monocrop (specifically wheat) growers in the Swartland area of the Western Cape are struggling to maintain long-term profitability and sustainability of the crop production, challenging them to rethink about the introduction crop rotation in the production planning. By making proper assumptions, this paper develops a mixed integer linear programming model to suggest a decision planning for the farm planning problem faced by an integratedcrop- livestock production farmer. The mathematical model developed includes crop production, dairy production and wool sheep production activities, which permitted the consideration of five crop types within a crop rotation system. By assuming that a farmer uses a cycle of at most three years, the crop rotation model was incorporated in the composite mixed integer linear farm planning model. In order to demonstrate the application of the mathematical farm planning model formulated, a case study is presented. Relevant data from the Koeberg area of the Swartland region of the Western Cape was applied. For each planning period, the model assumed that the farm has the option of selecting from any of 15 cropping strategies. A land which is not allocated to any of the 15 crop rotation strategies due to risky production situation is left as grass land for roughage purposes of the animal production. Results of the mathematical model indicated that farm profit is dependent on the cropping strategy selected. Additionally, animal production level was also dependent on the crop strategy appl ied. Furthermore, study results suggest that the profit generated from the integrated crop-livestock farm production by adopting crop rotation was superior to profit generated 1'1'0111 the farm activities which are based on monocrop wheat strategy. Empirical results also indicated that the complex interrelationship involved in a mixed crop-livestock farm operation play a major role in determining optimal farm plans. This complex interrelationships favour the introduction of crop rotation in the crop production activities of the farm under investigation. Crop production risk is the major risk component of risk the farmer faces in the farm production. In this study, risk is incorporated in the mixed integer programrnmg farm planning model as a deviation from the expected values of an activity of returns. Model solution with risk indicated that crop rotation strategy and animal production level is sensitive to risk levels considered. The Results also showed that the incorporation of risk in the model greatly affects the level of acreage allocation, crop rotation and animal production level of the farm. Finally, to improve the profitability and sustainability of the farm activity, the study results suggest that the introduction of crop rotation which consist cereals, oil crops and leguminous forages is of paramount importance. Furthermore, the inclusion of forage crops such as medics in the integrated crop livestock production is beneficial for sustained profitability from year to year. / AFRIKAANSE OPSOMMING: Wisselbou is baie belangrik om volhoubare winsgewindheid te verseker in 'n geintegreerde lewendehawe I gewasverbouing boerdery in die Swartland gebied van Wes-Kaap. "n Monokultuur van veral koring produksie het ernstige problerne vir produsente veroorsaak. In hierdie studie word 'n gemengde heeltallige liniere prograrnmerings-model gebruik om te help met besluitneming in sulke boerderye.Die wiskundige model beskou die produksie van kontant- en voer-gewasse (5 verskillende soorte) asook suiwel- en wol/vleis-produksie (beeste en skape) .Daar word aanvaar dat die boer "n siklus van hoogstens 3 jaar in die wisselbou rotasie model gebruik .. 'n Gevallestudie word gedoen met behulp van toepaslike data van 'n plaas in die Koeberg gebied. Die model aanvaar dat die produsent 'n keuse het uit 16 wisselbou strategic .Resultate toon dat winsgewindheid afhanklik is van die strategie gekies en dat wisselbou beter resultate lewer as in die geval van "n monokultuur.Dit wys ook dat die wisselwerking tussen diereproduksie en gewasproduksie baie belangrik is in die keuse van 'n optimale strategie. Die risiko in gewasverbouing is die belangrikste risiko factor vir die produsent.In hierdie studie word risiko ook ingesluit in die gemengde heeltallige model, naamlik as 'n afwyking van die verwagte opbrengs-waardes .Die model toon duidelik dat gewasproduksie en lewendehawe-produksie baie sensitief is ten opsigte van die gekose risiko vlak. Die studie toon ook dat 'n wisselbou program wat die produksie van graan (veral koring) .oliesade asook voere insluit belangrik is vir volhoubare winsgewindheid Die insluiting van klawers (bv "medics") is veral belangrik hier.
13

Evaluating summer cover crop species and management strategies for rainfed maize based cropping systems in the central region of the Eastern Cape Province of South Africa

Ganyani, Lloyd Munashe January 2011 (has links)
The overall objective of the whole study was to assess whether conservation agriculture (CA) systems can work in the Eastern Cape Province (EC). The CA systems were engaged through cover cropping to address land degradation problems by emphasizing high biomass production in order to realize short term benefits such as moisture conservation, weed suppression and soil fertility benefits under rainfed conditions in the central region of the Eastern Cape province. Since rainfall is the most limiting factor to crop production in the EC, a within season rainfall distribution analysis was conducted to expose the quality of the season (onset, end and duration) and hence the feasibility of CA systems to guide agronomic decisions by farmers in EC. To assess season parameters, thirty four years of daily rainfall was collected from the University of Fort Hare Research station and used to conduct the rainy pentad (5 day rainfall totals) analysis and the daily rainfall analysis using INSTAT software programme. Based on the pentad analysis, results showed that Alice does not have a rainy season in 1 out of 2 years (50% probability) but has one in 1 out of 4 years (25% probability level). This criterion proved to be harsher and conservative when compared to the daily rainfall approach which is more precise in measuring trends on season parameters. The daily rainfall analysis indicated a 65% feasibility for the dry land cropping systems in the EC. The pentad analysis however was effective in illustrating seasonality and it showed that the wet season begins on the 1st of November, ending on the 22nd of March lasting for 140 days. Though the season duration appeared too long, the existence of dry spells during critical growth stages adversely affects the quality of the season. The daily rainfall analysis also managed to derive a signal which can guide planting decisions. For planting to be successful, this analysis determined that 20 mm of rain should be received in two consecutive days after the 1st of November. A screening trial for cover crop biomass production and weed suppression was conducted on-station Fort Hare Research Farm (32°46' S and 26° 50' E), and Msobombvu village (MSBV) (32°44' S, and 26° 55' E) over two seasons (2007/08 and 2008/09). Six summer cover crops i.e. cowpea (Vigna unguiculata), dolichos lablab (Dolichos argenteus), sunnhemp (Crotalaria juncea), buckwheat (Fagopyrum sagittatum), forage sorghum (Sorghum bicolor) and sunflower (Helianthus annus) were evaluated for biomass yield, and weed suppression. Decomposition rates, moisture conservation and residual effects of these cover crops on the succeeding main crop were also evaluated under dryland conditions. The screening trial was laid in randomized complete block design replicated three times. Forage sorghum (Sorghum bicolor) and sunflower (Helianthus annus) were identified as high biomass producers and their dry matter yields ranged from 8 -12 t ha-1. These cover crops can be useful in generating high biomass in rainfed cropping systems in the EC. Other cover crops produced 3 - 4 t ha-1 of biomass which fell short of the 6 t ha-1 expected benchmark. However, these biomass yields were important in weed management since all cover crop species showed a similar degree of weed suppression which surpassed the weed fallow treatment. As dead mulches, the cover crops failed to show residual moisture conservation and weed control benefits for the succeeding maize crop mainly because of poor residue persistence, and low harvestable fallow rainfall. Buckwheat (Fagopyrum esculentum), was selected for further investigations in a follow up trial on station in 2008/09 season because of its weed smothering qualities, suitability to short cycle rotations, and possible allelopathic properties. The trial aimed at finding weed and cost effective management options of buckwheat that are none detrimental to the succeeding maize crop. Results showed that cropping systems where buckwheat is followed by a main crop may not work as they are unprofitable with respect to R100 rand invested. Though perceived to have allelopathic properties, buckwheat failed to demonstrate the possibilities of allelopathic action against weeds. Intercropping trial was conducted on-station in 2007/8-2008/09 seasons to try and find better ways of fitting legume cover crops into maize based cropping systems without compromising production of staple cereals on limited landholdings. The trials evaluated three factors in factorial combination, cover crop planting date, intercropping strategy, and cover crop species. The trial was laid as 2 x 2 x 3 factorial arranged in a split-split plot design. The main plot factor was cover crop planting date, cover crops simultaneously planted with maize and cover crop planted two weeks after planting maize (DKC 61-25). The sub-plot factor was intercropping strategy, strip intercropping and betweenrow intercropping. The sub-sub-plot factor was cover crop species, Dolichos lablab (Dolichos argenteus (Highworth), and Cowpea Vigna ungiculata (Agrinawa) plus control plots of sole maize. Results showed that same time planting of leguminous cover crops with maize using the in-between row intercropping patterns can derive appreciable system biomass (maize/cover crop) yields, utilize land efficiently whilst getting favourable maize grain yield. Based on the rainfall analysis, results showed that the probability of success when relay seeding cover crops after two weeks into standing maize is low (15% chances of success). This suggests that relay intercropping strategies would not work due to the unavailability of a good quality season.
14

Evaluation of cover crop species for biomass production, weed suppression and maize yields under irrigation in the Eastern Cape Province, South Africa

Musunda, Bothwell Zvidzai January 2010 (has links)
Achieving high biomass yields of cover crops has been a challenge to the success of Conservation Agriculture (CA) practices in the Eastern Cape (EC). A study was conducted to evaluate strategies for optimizing cover crop biomass production. Trials were carried out to screen summer and winter cover crops, as well as evaluate intercropping patterns and planting dates for biomass, weed suppression and subsequent maize yield under irrigation. Four summer legume cover crop species were evaluated under a Randomised Complete Block Design (RCBD) design. The cover crops were fertilized with 13.34 kg ha-1 of N, 20 kg ha-1 P and 26.66 kg ha-1 K. In the 2008/09 summer season a maize crop was superimposed on the 2007/08 screening trial under no-till. The crop was fertilized with 60 kg ha-1 of N. An intercropping trial was conducted over two seasons as a way of investigating the best way of incorporating cover crops into farmers cropping systems. This was done bearing in mind the limitation of resources such as land. The trial evaluated 3 factors laid as a 2 x 2 x 3 factorial arranged in a split-plot design. The main factor was cover crop planting date (planting at maize planting or 2 weeks after maize planting). The sub plot factor was intercropping pattern (strip intercropping and between row intercropping). A trial was also conducted to evaluate the effect of planting date (End of April and mid May) and four winter legume cover crop species on cover crop biomass, weed suppression and maize grain yield. The experiment was laid out as a Randomised Complete Block Design (RCBD) replicated 3 times. In the subsequent summer season a maize crop was superimposed on the winter trial to test the residual effects of the cover crop species. Another study was conducted to evaluate winter cereal cover crop species for biomass accumulation, weed suppression and subsequent maize grain yield. The cover crops as well as a weedy fallow control plot treatments were laid out as a Randomised Complete Block Design replicated 3 times. In the subsequent summer season a maize crop was superimposed on the site under no-till to evaluate the residual effect of the cover crops on maize. The results showed sunhemp, cowpea and lablab as the best cover crops with high biomass and weed suppression whilst mucuna was the least. Sunhemp consistently yielded higher cover biomass averaging 11200 kg ha-1 over the two seasons whilst mucuna had a consistently lowest average biomass yield of 4050 kg ha-1. These cover crops were above the critical 6 t ha-1 for effective weed suppression. There was a significant (p<0.01) relationship of cover crop dry weight and weed dry weight in both seasons. Subsequent maize grain yield was significantly higher in the sunhemp plots (64.2 %) than the weedy fallow plot. Mucuna, lablab and cowpea had maize grain yield increases of 16.6%, 33% and 43.2% respectively. Intercropping cover crops at maize planting yielded higher cover crop dry weights than a delay in intercropping cover crops. A delay in intercropping resulted in significantly higher average maize grain yield of 4700 kg ha-1 compared to intercropping at maize planting (3800 kg ha-1) and sole maize (4300 kg ha-1) over the two seasons. Strip intercropping also yielded higher (5000 kg ha- 1) average maize grain yield compared to row intercropping (3600 kg ha-1) and sole maize (4300 kg ha-1). There was a significant (p<0.05) relationship between cover crop dry weight in the 2007/08 season and maize grain yield in the 2008/09 season. Early planting grazing vetch gave the highest biomass yield of 8100 kg ha-1 whilst early planted red clover had the lowest biomass of 635 kg ha-1. Low weed dry weights were also obtained from the early planted grazing vetch as opposed to the other treatments. There was a significant (p<0.001) relationship of cover crop dry weight and weed dry weight. In the subsequent 2008/09 summer season early planted grazing vetch had the highest maize yield of 7500 kg ha-1 which was 56.3 % more than the weedy fallow plot had 4800 kg ha-1. The weedy fallow plot also had high weed infestation than the cover crop plots. There were significant (p<0.01) relationships between cover crop dry weight and maize grain yield, winter weed dry weight and maize grain yield and summer weed dry weight and maize grain yield. The results also showed triticale (13900 kg ha-1) as the best winter cover crop for biomass production. Italian ryegrass (6500 kg ha-1) produced the least amount of biomass. In The subsequent maize crop white oats gave highest maize grain yield (6369 kg ha-1) which was 33 % more than the weedy fallow plot (4784 kg ha- 1). There were also significant (p< 0.01) relationships of maize grain yield and winter weed dry weight, maize grain yield and summer growing weeds. The various studies demonstrated that there is opportunity for high biomass production under small scale farmers irrigated conditions using cover crops both in winter and summer. Best bet cover crops were sunhemp, cowpea and lablab for summer and triticale, white oats, barley, Italian ryegrass and grazing vetch for winter. Cover crops can also be incorporated into farmers cropping systems as sole crops or intercrops within the maize based cropping systems. Strip intercropping can be used by farmers as a way of introducing cover crops. Critical to achievement of high biomass is the time of planting cover crops with high biomass when planting is done early. A 2 week delay in strip intercropping cover crop into maize can be used as a way of incorporating cover crops into farmers cropping systems with minimal maize yield reduction.

Page generated in 0.0982 seconds