• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strain measurement via the inner surface of a rolling large lug tyre

Pegram, Megan Savannah 10 1900 (has links)
The complex interface between tyre and terrain is a largely studied topic in terramechanics and vehicle dynamics research. This interface, known as the contact patch, is however hidden from view and cannot easily be measured. Several studies have focused on measuring tyre strain on the inside surface of the tyre to indirectly determine tyre parameters. The inner surface is separated from the contact patch by the tyre thickness however this difference can be considered small in comparison to the bene t gained by a safe environment for measurement systems. Static studies of tyre strain have been successful however lacks the important phenomena occurring in a rolling tyre. Tyre strain measurements in dynamic tyres have been limited to discrete points and/or once per revolution, which is an insufficient sampling rate for vehicle stability controllers such as ABS. This study performs full-fi eld and point strain measurements of the inner tyre surface of a rolling agricultural tyre at low speeds. Stereo cameras mounted on a mechanically stabilised rim will record full-fi eld measurement of the contact patch kept in constant view. Digital Image Correlation techniques are used to determine full-fi eld deformation and strain from successively captured images. Point measurements, such as strain gauges, are included in the study for a comparative measurement. An agricultural tyre hosts large lugs which include large strain concentrations within the contact patch. The complex tyre structure signi ficantly influences the strain measurements, other factors such as inflation pressure, vertical load and slip angle is also studied. Since most vehicle forces are transmitted through the tyre at the tyre-terrain interface, capabilities to measure this area will be a great benefi t for tyre research and leading towards a smart tyre. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2020. / Mechanical and Aeronautical Engineering / MEng (Mechanical Engineering) / Unrestricted

Page generated in 0.0719 seconds