Spelling suggestions: "subject:"aharonovbohm"" "subject:"aharonov""
1 |
Path Integrals and Quantum Mechanics / Banintegraler och KvantmekanikSandström, Martin January 2015 (has links)
In this thesis we are investigating a different formalism of non-relativistic quantum mechanics called the path integral formalism. It is a generalization of the classical least action principle. The introduction to this subject begins with the construction of the path integral in terms of the idea of probability amplitudes whose absolute square gives the probability of finding a system in a particular state. Then we show that if the Lagrangian is a quadratic form one needs only to calculate the classical action besides from a time-dependent normalization constant to find the explicit expression of the path integral. We look in to the subject of two kinds of slit-experiments: The square slit, the single- and the double-Gaussian slit. Also, the propagator for constrained paths is calculated and applied to the Aharonov-Bohm effect, which shows that the vector potential defined in classical electrodynamics have a physical meaning in quantum mechanics. It is also shown that the path integral formulation is equivalent to the Schrödinger description of quantum mechanics, by deriving the Schrödinger equation from the path integral. Further applications of the path integral are discussed. / I detta fördjupningsarbete undersöker vi en annan formalism av icke-relativistisk kvantmekanik kallad banintegral formalismen. Det är en generalisering av den klassiska verkansprincipen. Introduktionen till detta ämne börjar med konstruktionen av banintegralen i termer av sannolikhetsamplituder vars absolutbelopp i kvadrat ger sannolikheten av att finna ett system i ett särskilt tillstånd. Sedan visar vi att om Lagrangianen är av kvadratisk form så krävs endast en beräkning av den klassiska verkan förutom en tidsberoende normaliseringskonstant för att finna ett uttryck för banintegralen. Vi ser på två olika typer av spaltproblem: Den kantinga spalten, enkel- och dubbel Gaussisk spalt. Vi beräknar dessutom propagatorn för banor med restriktioner och applicerar detta på Aharonov-Bohm effekten, som visar att den klassiska vektorpotentialen som definierad i klassisk elektrodynamik har en fysikalisk mening i kvantmekaniken. Vi visar också ekvivalensen av banintegralformalismen med Schrödingerekvationen genom att härleda Schrödingerekvationen från banintegralen. Andra applikationer av banintegralen diskuteras.
|
2 |
Electron states in low dimensional structuresTan, Weichao January 1995 (has links)
No description available.
|
3 |
Contribution à l'analyse de la dynamique quantique dans des systèmes de Hall en présence d'un flux Aharonov-Bohm dépendant du temps / Contributions to the analysis of the quantum dynamics of Hall systems with time dependant Aharonov-Bohm fluxMeresse, Cédric 25 November 2010 (has links)
Nous nous intéressons à la dynamique dans les systèmes de Hall en présence d'un flux Aharonov-Bohm dépendant du temps. Nous présenterons deux théorèmes adiabatiques applicable à ces modèles ainsi qu'un résultat sur l'existence d'une constante de mouvement non-trivial. On utilisera un algorithme de diagonalisation partielle. / We will ahve interest in the quantum dynamics in Hall systems with time dependent Aharonov-Bohm flux. We will present two adiabatic theorems which can applied to these models and a quantitive result on the existence of a non-trivial constant of motion. To prove this result, we will use a partial diagonalization algorithm
|
4 |
The Aharonov-Bohm effect and resonant scattering in graphene / Aharonov-Bohm-Effekt und resonante Streuung in GraphenSchelter, Jörg January 2012 (has links) (PDF)
In this thesis, the electronic transport properties of mesoscopic condensed matter systems based on graphene are investigated by means of numerical as well as analytical methods. In particular, it is analyzed how the concepts of quantum interference and disorder, which are essential to mesoscopic devices in general, are affected by the unique electronic and transport properties of the graphene material system. We consider the famous Aharonov–Bohm effect in ring-shaped transport geometries, and, besides providing an overview over the recent developments on the subject, we study the signatures of fundamental phenomena such as Klein tunneling and specular Andreev reflection, which are specific to graphene, in the magnetoconductance oscillations. To this end, we introduce and utilize a variant of the well-known recursive Green’s function technique, which is an efficient numerical method for the calculation of transport observables in effectively non-interacting open quantum systems in the framework of a tight binding model. This technique is also applied to study the effects of a specific kind of disorder, namely short-range resonant scatterers, such as strongly bound adatoms or molecules, that can be modeled as vacancies in the graphene lattice. This numerical analysis of the conductance in the presence of resonant scatterers in graphene leads to a non-trivial classification of impurity sites in the graphene lattice and is further substantiated by an independent analytical treatment in the framework of the Dirac equation. The present thesis further contains a formal introduction to the topic of non-equilibrium quantum transport as appropriate for the development of the numerical technique mentioned above, a general introduction to the physics of graphene with a focus on the particular phenomena investigated in this work, and a conclusion where the obtained results are summarized and open questions as well as potential future developments are highlighted. / In dieser Arbeit werden die elektronischen Transporteigenschaften von Graphen-basierten mesoskopischen Festkörpersystemen mittels numerischer und analytischer Methoden untersucht. Im Besonderen wird analysiert, wie Konzepte von Quanteninterferenz und Unordnung, die eine wesentliche Rolle für mesoskopische Systeme spielen, durch die einzigartigen elektronischen und Transporteigenschaften von Graphen beeinflusst werden. Wir betrachten den berühmten Aharonov-Bohm-Effekt in ringförmigen Transportgeometrien, geben einen Überblick über die Entwicklung dieses Themas in den letzten Jahren und befassen uns mit den charakteristischen Merkmalen, die fundamentale Phänomene wie Klein-Tunneln und gerichtete Andreev-Reflexion, welche spezifisch für Graphen sind, in den Magnetooszillationen der elektrischen Leitfähigkeit aufweisen. Dazu führen wir eine Variante der Methode der rekursiven Greenschen Funktionen ein, die ein effizientes numerisches Verfahren zur Berechnung von Transportobservablen in effektiv nicht-wechselwirkenden, offenen Quantensystemen im Rahmen eines „tight binding“-Modells darstellt. Diese Methode wird desweiteren zur Erforschung eines speziellen Typs von Unordnung herangezogen, nämlich kurzreichweitiger, resonanter Streuzentren wie stark gebundene Adatome oder Moleküle, die als Fehlstellen in der Graphen-Gitterstruktur modelliert werden können. Diese numerische Analyse der elektrischen Leitfähigkeit bei Anwesenheit resonanter Streuzentren in Graphen führt zu einer nicht-trivialen Klassifizierung von Fremdatom-Gitterplätzen innerhalb des Graphen-Gitters und wird durch eine unabhängige analytische Behandlung im Rahmen der Dirac-Gleichung bekräftigt. Die vorliegende Arbeit enthält weiterhin eine formale Einführung in das Thema des Nichtgleichgewichts-Quantentransports, wie es für die Entwicklung der genannten numerischen Methode dienlich ist, eine allgemeine Einführung in die Physik von Graphen mit Fokus auf die speziellen Aspekte, die in dieser Arbeit untersucht werden, sowie eine abschließende Darstellung, in der die erhaltenen Ergebnisse zusammengefasst und offene Fragen sowie mögliche zukünftige Entwicklungen hervorgehoben werden.
|
5 |
Condições de Contorno mais Gerais no Espalhamento Aharonov-Bohm de uma Partícula de Dirac em Duas Dimensões: Conservação da Helicidade e da Simetria de Aharonov-Bohm / More general boundary conditions in the Aharonov-Bohm scattering of a Dirac particle in two dimensions: helicity conservation and Aharonov-Bohm symmetryAraujo, Vanilse da Silva 29 May 2000 (has links)
Nessa tese, mostramos que a Hamiltoniana H e o operador helicidade de uma partícula de Dirac que se movimenta em duas dimensões na presença de um tubo de fluxo magnético infinitamente fino na origem admitem, cada um, uma família de quatro parâmetros de extensões auto-adjuntas. Para cada extensão correspondem condições de contorno a serem satisfeitas pelas auto-fuções na origem. Apesar dos operadores H e formalmente comutarem antes da especificação das condições de contorno, para garantirmos a conservação da helicidade, não é suficiente obtermos as mesmas condições de contorno para ambos os operadores, ou seja, não é suficiente a determinação de um domínio comum a ambos. Mostramos que, para certas relações entre os parâmetros das extensões satisfeitas, é possível a determinação dos domínios mais gerais onde ambos os operadores H e são auto-adjuntos e onde a helicidade é conservada, simultaneamente com a preservação da simetria de Aharonov-Bohm ( + 1), onde é o fluxo magnético em unidades naturais. Nossos resultados implicam que, nem a conservação da helicidade nem a simetria de Aharonov-Bohn, resolvem o problema da escolha da condição de contorno fisicamente correta. / We show that both the Hamiltonian H and the helicity operator of a Dirac particle moving in two dimension in the presence of an infinitely thin magnetic flux tube admit each a four- parameter family of self-adjoint extensions. Each extension is in one-to-one correspondence with the boundary conditions (BC\'s) to be satisfied by the eigenfunctions at the origin. Althou- gh the actions af these two operators commute before specification of boundary conditions, to ensure helicity conservation it is not sufficient to take the same BC\'s for both operators. We show that, given certain relations between the parameters of the extensions it is possible to write down the most general domain where both operators H and are self-adjoint with heli- city conservation and also Aharonov-Bohm symmetry ( + 1) preserved, where is the magnetic flux in natural units. The continuity of the dynamics is also obtained. Our results im- ply that neither helicity conservation nor Aharonov-Bohm symmetry by themselves solves the problem of choosing the \"physical \"boundary conditions for this system.
|
6 |
Correção não-comutativa para o efeito Aharonov-Bohm: uma abordagem da teoria quântica de campos / Non-commutative correction Aharanov-Bohm Effect Quantum Field Theory ApproachAnacleto, Marcos Antonio 16 November 2004 (has links)
Estudamos as teorias não-relativísticas e não-comutativas de campos de spin zero e l/2 acoplado minimamente com o campo ele Chern-Simons em 2+ 1 dimensões. Na situação comutativa o modelo escalar foi usado para simular o efeito Aharonov-Bohrn na abordagem da teoria de campos. Na teoria escalar verificamos que, contrariamente ao resultado comutativo, a inclusão ele urna auto--interação quártica do campo escalar não ó necessária para garantir a renormalização ultravioleta do modelo. Entretanto, para obter um limite comutativo analítico a presença ele uma auto-interação quártica é exigida. Mostramos para o caso ele partículas ele spin 1/2 que a contribuição em um laço para a matriz ele espalhamento contendo o termo de Pauli é puramente não--planar. O termo de Pauli desempenha a mesma função ela auto-interação quártica como no caso escalar. Para valores pequenos do parâmetro da não--comutatividade determinamos as correções para o espalhamento Aharonov-Bohm e provamos que, até ordem de um laço, os modelos são livres de singularidades ultravioleta/infravermelha. / We study noncommutative nonrelativistic theories of spin 0 and 1/2 field coupled to thc Chern-Sirnons field in 2+1 dimensions. In the commutative situation the scalar model has been used to simulate the Aharonov-Bohm effect in the field theory context. We verified that, contrarily to the commutative result, the inclusion of a quartic self-interaction of the scalar field is not necessary to secure the ultraviolet renormalization of the model. However, to obtain a smooth commutative limit the presence of a quartic gauge invariant self-interaction is required. For the case of spin 1/2 particles we show that the one-loop contributions to the that scattering matrix the which contain the Pauli\'s term are purely nonplanar. Thc Pauli\'s term plays the same role of a quartic self-interaction in the scalar case. For small values of the noncommutative parameter we fix the corrections to the Aharonov-Bohm scattering and prove that up to one-loop the models are free from dangerous infrared/ultraviolet divergences.
|
7 |
Correção não-comutativa para o efeito Aharonov-Bohm: uma abordagem da teoria quântica de campos / Non-commutative correction Aharanov-Bohm Effect Quantum Field Theory ApproachMarcos Antonio Anacleto 16 November 2004 (has links)
Estudamos as teorias não-relativísticas e não-comutativas de campos de spin zero e l/2 acoplado minimamente com o campo ele Chern-Simons em 2+ 1 dimensões. Na situação comutativa o modelo escalar foi usado para simular o efeito Aharonov-Bohrn na abordagem da teoria de campos. Na teoria escalar verificamos que, contrariamente ao resultado comutativo, a inclusão ele urna auto--interação quártica do campo escalar não ó necessária para garantir a renormalização ultravioleta do modelo. Entretanto, para obter um limite comutativo analítico a presença ele uma auto-interação quártica é exigida. Mostramos para o caso ele partículas ele spin 1/2 que a contribuição em um laço para a matriz ele espalhamento contendo o termo de Pauli é puramente não--planar. O termo de Pauli desempenha a mesma função ela auto-interação quártica como no caso escalar. Para valores pequenos do parâmetro da não--comutatividade determinamos as correções para o espalhamento Aharonov-Bohm e provamos que, até ordem de um laço, os modelos são livres de singularidades ultravioleta/infravermelha. / We study noncommutative nonrelativistic theories of spin 0 and 1/2 field coupled to thc Chern-Sirnons field in 2+1 dimensions. In the commutative situation the scalar model has been used to simulate the Aharonov-Bohm effect in the field theory context. We verified that, contrarily to the commutative result, the inclusion of a quartic self-interaction of the scalar field is not necessary to secure the ultraviolet renormalization of the model. However, to obtain a smooth commutative limit the presence of a quartic gauge invariant self-interaction is required. For the case of spin 1/2 particles we show that the one-loop contributions to the that scattering matrix the which contain the Pauli\'s term are purely nonplanar. Thc Pauli\'s term plays the same role of a quartic self-interaction in the scalar case. For small values of the noncommutative parameter we fix the corrections to the Aharonov-Bohm scattering and prove that up to one-loop the models are free from dangerous infrared/ultraviolet divergences.
|
8 |
Condições de Contorno mais Gerais no Espalhamento Aharonov-Bohm de uma Partícula de Dirac em Duas Dimensões: Conservação da Helicidade e da Simetria de Aharonov-Bohm / More general boundary conditions in the Aharonov-Bohm scattering of a Dirac particle in two dimensions: helicity conservation and Aharonov-Bohm symmetryVanilse da Silva Araujo 29 May 2000 (has links)
Nessa tese, mostramos que a Hamiltoniana H e o operador helicidade de uma partícula de Dirac que se movimenta em duas dimensões na presença de um tubo de fluxo magnético infinitamente fino na origem admitem, cada um, uma família de quatro parâmetros de extensões auto-adjuntas. Para cada extensão correspondem condições de contorno a serem satisfeitas pelas auto-fuções na origem. Apesar dos operadores H e formalmente comutarem antes da especificação das condições de contorno, para garantirmos a conservação da helicidade, não é suficiente obtermos as mesmas condições de contorno para ambos os operadores, ou seja, não é suficiente a determinação de um domínio comum a ambos. Mostramos que, para certas relações entre os parâmetros das extensões satisfeitas, é possível a determinação dos domínios mais gerais onde ambos os operadores H e são auto-adjuntos e onde a helicidade é conservada, simultaneamente com a preservação da simetria de Aharonov-Bohm ( + 1), onde é o fluxo magnético em unidades naturais. Nossos resultados implicam que, nem a conservação da helicidade nem a simetria de Aharonov-Bohn, resolvem o problema da escolha da condição de contorno fisicamente correta. / We show that both the Hamiltonian H and the helicity operator of a Dirac particle moving in two dimension in the presence of an infinitely thin magnetic flux tube admit each a four- parameter family of self-adjoint extensions. Each extension is in one-to-one correspondence with the boundary conditions (BC\'s) to be satisfied by the eigenfunctions at the origin. Althou- gh the actions af these two operators commute before specification of boundary conditions, to ensure helicity conservation it is not sufficient to take the same BC\'s for both operators. We show that, given certain relations between the parameters of the extensions it is possible to write down the most general domain where both operators H and are self-adjoint with heli- city conservation and also Aharonov-Bohm symmetry ( + 1) preserved, where is the magnetic flux in natural units. The continuity of the dynamics is also obtained. Our results im- ply that neither helicity conservation nor Aharonov-Bohm symmetry by themselves solves the problem of choosing the \"physical \"boundary conditions for this system.
|
9 |
Contribution à l'analyse de la dynamique quantique dans des systèmes de Hall en présence d'un flux Aharonov-Bohm dépendant du tempsMeresse, Cédric 25 November 2010 (has links) (PDF)
Le sujet de cette thèse est d'étudier la dynamique quantique d'une particule évoluant dans le plan sous l'influence de champs magnétique et électrique croisés. Dans le cas où ce système est actionné par un flux Aharonov-Bohm dépendant du temps, nous présenterons un théorème adiabatique basé sur une analyse spectrale fine en l'absence d'un potentiel électrique. Pour le cas sans champ extérieur et avec un petit potentiel électrique, nous présentons deux résultats. Premièrement, nous prouvons pour des potentiels arbitraires que la dynamique effective donne une approximation au premier ordre pour des temps longs. Ensuite, nous montrons que pour une classe de potentiels lisses et petits, nous pouvons construire une constante du mouvement non triviale. Pour cela, nous prouvons que l'hamiltonien est unitairement équivalent à un hamiltonien effectif commutant avec l'observable de l'énergie cinétique. Pour démontrer cela, nous utilisons un algorithme de diagonalisation partielle.
|
10 |
Electron dynamics in surface acoustic wave devicesThorn, Adam Leslie January 2009 (has links)
Gallium arsenide is piezoelectric, so it is possible to generate coupled mechanical and electrical surface acoustic waves (SAWs) by applying a high-frequency voltage to a transducer on the surface of GaAs. By combining SAWs with existing low-dimensional nanostructures one can create a series of dynamic quantum dots corresponding to the minima of the travelling electric wave, and each dot carries a single electron at the SAW velocity (~ 2800 m/s). These devices may be of use in developing future quantum information processors, and also offer an ideal environment for probing the quantum mechanical behaviour of single electrons. This thesis describes a numerical and theoretical study of the dynamics ofan electron in a range of geometries. The numerical techniques for solving thetime-dependent Schrödinger equation with an arbitrary time-dependent potential will be described in Chapter 2, and then applied in Chapter 3 to calculate the transmission of an electron through an Aharonov-Bohm (AB) ring. It will be seen that an important property of the techniques used in this thesis is that they can be easily adapted to study realistic geometries, and we will see features in the AB oscillations which do not arise in simplified analytic descriptions. In Chapter 4, we will then study a device consisting of two parallel SAW channels separated by a controllable tunnelling barrier. We will use numerical simulations to investigate the effect of electric and magnetic fields upon the electron dynamics, and develop an analytic model to explain the simulation results. From the model, it will be apparent that it is possible to use this device to rotatethe state of the electron to an arbitrary superposition of the first two eigenstates. We then introduce coherent and squeezed states in Chapter 5, which are ex-cited states of the quantum harmonic oscillator. Coherent and squeezed electronicstates may be of use in quantum information processing, and could also arise dueto unwanted perturbations in a SAW device. We will discuss how these statescan be controllably generated in a SAW device, and also discuss how they couldthen be detected. In Chapter 6 we describe how to use the motion of a SAW to create a rapidly-changing potential in the frame of the electron, leading to a nonadiabatic excita-tion. The nonadiabatically-excited state oscillates from side to side within a 1Dchannel on a few-picosecond timescale, and this motion can be probed by placing a tunnelling barrier at one side of the channel. Numerical simulations will beperformed to show how this motion can be controlled, and the simulation resultswill be seen to be in good agreement with recent experimental work performed by colleagues. Finally, we will show that this device can be used to measure the initial state of an electron which is an arbitrary superposition of the first twoeigenstates.
|
Page generated in 0.0428 seconds