• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • Tagged with
  • 11
  • 11
  • 11
  • 9
  • 9
  • 8
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amélioration des performances de la turbine hydrolienne à pale oscillante par l'ajout d'un volet Gurney double

Genest, Benoît 10 August 2023 (has links)
Thèse ou mémoire avec insertion d'articles. / Dans le but d'améliorer les performances de la turbine à pale oscillante en conservant sa simplicité, on explore une modification géométrique : l'ajout d'un volet Gurney double. On débute par caractériser les volets Gurney, le volet simple et le volet double, en les appliquant à un profil d'aile typique, le NACA 0015, qui constituera ensuite la pale de la turbine. En étudiant l'impact aérodynamique à angle d'attaque fixe des volets Gurney par une approche numérique en 2D, on confirme certaines règles de dimensionnement de la hauteur (h[indice GF]) du volet en fonction de l'épaisseur de la couche limite, et on étend ces règles au cas des volets doubles auparavant peu étudiés dans la littérature. Des améliorations à la finesse (L/D), à la pente et au coefficient de portance du profil équipé de volets simples et doubles sont observées, laissant présager une application intéressante sur la turbine à pale oscillante pour le volet double. On applique ensuite ces volets à une turbine à pale oscillante 2D, dont les caractéristiques se prêtent bien à une application réelle en 3D avec une envergure finie, soit une turbine dont l'amplitude de pilonnement est égale à la corde et dont l'angle d'attaque effectif maximal est de 29°, permettant d'éviter l'apparition d'émissions tourbillonnaires au bord d'attaque tout en offrant des performances de base jugées élevées. On observe des améliorations de performance allant de +3% à +10% sur des turbines déjà performantes, sans complexité accrue, par l'ajout du volet double. On constate que les règles de dimensionnement du volet Gurney optimisant la finesse du profil ne s'appliquent pas à la turbine à pale oscillante, dont les performances sont plutôt liées à la pente de portance du profil de pale utilisé, ce qui ouvre la porte à de futures modifications cinématiques de la turbine visant à exploiter la phase de portance de son cycle en employant des amplitudes de pilonnement plus importantes. / In order to improve the performance of the oscillating-foil turbine while retaining its simplicity, ageometric modification is explored: the addition of a double Gurney flap. The Gurney flaps, both single and double, are first characterized by applying them to a typical NACA 0015 airfoil, which will later serve as the blade of the turbine. By studying the aerodynamic impact of the Gurney flaps at a fixed angle of attack through a 2D numerical approach, the height (h[subscript GF]) of the flap is confirmed to scale with the thickness of the boundary layer where the flap is affixed, prior to its installation, and this scaling rule is extended to the case of double flaps, which were previously little studied in the literature. Improvements to the lift-to-drag ratio (L/D) and to the lift slope and coefficient of the airfoil equipped with single and double flaps are observed, suggesting an interesting application of the double flap on the oscillating-foil turbine. These flaps are then applied to a 2D oscillating-foil turbine, whose characteristics are well-suited for a real-life 3D application with a finite span, that has a heaving amplitude equal to its chord, and a maximum effective angle of attack of 29°, which avoids the occurrence of leading-edge vortex shedding while still offering a high base performance. Improvements in performance ranging from +3% to +10% are observed on already high-performing turbines with the addition of the double flap, without increased complexity. It is found that the scaling rules for the Gurney flap for maximizing the L/D ratio do not apply to the oscillating-foil turbine, whose performance is rather linked to the lift slope of the blade profile used, which opens the door to future kinematic modifications of the turbine aimed at exploiting the lift phase of its cycle with larger heaving amplitudes.
2

Analysis, optimization and demonstration of a new concept of hydrokinetic turbine based on oscillating hydrofoils

Kinsey, Thomas 19 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2011-2012 / Un nouveau concept d’hydrolienne basée sur des ailes oscillantes est étudié. La présente étude a pour but d’étudier l’hydrodynamique instationnaire d’une aile oscillante, d’optimiser son mouvement afin de maximiser l’extraction de puissance et de démontrer le potentiel d’une turbine à ailes oscillantes par une campagne expérimentale sur un prototype. L’analyse et l’optimisation de la turbine à ailes oscillantes ont été effectuées par simulations numériques à bas nombre de Reynolds (laminaire) ainsi qu’à haut nombre de Reynolds (Unsteady Reynolds-Averaged Navier-Stokes; URANS). Une stratégie numérique 2D et 3D impliquant l’utilisation d’interfaces de glissement a été développée spécifiquement pour cette application de corps oscillants avec de grandes amplitudes de mouvement. À l’aide de cette stratégie numérique, une étude paramétrique fut effectuée et permit l’identification des paramètres dominants en ce qui a trait à la performance hydrodynamique de la turbine à ailes oscillantes. Basé sur un grand nombre de simulations, les zones optimales de production de puissance ont été identifiées dans les espaces paramétriques pertinents. De plus, des configurations spatiales optimales ont été identifiées pour le cas de turbines à ailes oscillantes en tandem. Le potentiel de l’hydrolienne à ailes oscillantes a été formellement établi dans ce travail grâce à une campagne expérimentale sur un prototype à ailes en tandem de 2 kW. La performance de ce dernier s’avéra compétitive avec celle des hydroliennes de type rotors à axe horizontal que l’on retrouve dans la majorité des designs d’hydrolienne proposés. Les données de la campagne expérimentale ont également permis de valider les résultats des simulations numériques par leur accord avec les simulations 3D. / A new concept of hydrokinetic turbine based on oscillating hydrofoils is investigated. The objective of this study is to analyze the unsteady hydrodynamics of oscillating foils, to optimize their motions for maximum power extraction and to demonstrate in practice the potential of such a concept of turbine through experiments on a prototype. The analysis and optimization have been conducted via low Reynolds number, laminar numerical simulations as well as high Reynolds number, Unsteady Reynolds- Averaged Navier-Stokes (URANS) computations. A 2D and 3D numerical methodology relying on the use of sliding interfaces and suitable to the case of foils undergoing oscillations of large amplitudes is presented. Using that numerical strategy, a parametric study is conducted and leads to the identification of the dominant parameters impacting the hydrodynamic performance of the oscillating-foil turbine. Based on a large number of simulations, the performance of the oscillating-foil turbine has been mapped in relevant parametric spaces. In addition, optimal spatial configurations of turbines with tandem foils is also provided. The potential of the oscillating-foils hydrokinetic turbine has also been formally established in this work through field tests on a 2kW tandem-foils prototype. Its performance has been found to be competitive with the best competing technologies based on horizontal-axis rotor-blades. The experimental data have also been used here to validate the numerical models and have been found to strongly support the 3D numerical simulations.
3

Optimizing the power-generation performance of flapping-foil turbines while simplifying their mechanical design with the use of elastic supports

Boudreau, Matthieu 18 April 2019 (has links)
Due à la complexité des mécanismes typiquement requis pour contraindre l’aile d’une turbine à aile oscillante à suivre des mouvements spécifiques, cette thèse étudie la possibilité de bénéficier de mouvements non contraints, dits passifs. En pratique, cela implique que l’aile est attachée à la structure de la turbine à l’aide de supports élastiques indépendants en pilonnement et en tangage, formés de ressorts et d’amortisseurs. Par conséquent, seul un contrôle indirect des mouvements est possible en ajustant adéquatement les paramètres structuraux affectant la dynamique de l’aile, tels que les paramètres d’inertie, d’amortissement et de raideur de l’aile et de ses supports élastiques. En premier lieu, un prototype ayant des mouvements passifs autant en pilonnement qu’en tangage, et donc étant complètement passif, a été conçu et testé dans un canal à surface libre. Cette première phase du présent travail de recherche a confirmé la faisabilité et le potentiel de ce concept en permettant d’extraire une quantité significative d’énergie de l’écoulement d’eau. Cependant, l’efficacité maximale atteinte est demeurée inférieure à ce qui peut être obtenu en contraignant l’aile à suivre des mouvements précis. Suite à ces expériences, un algorithme résolvant la dynamique du solide a été implémenté et couplé au logiciel résolvant la dynamique du fluide gouverné par les équations de Navier-Stokes. Des simulations numériques ont été réalisées afin d’analyser plus en détail la dynamique de chacun des deux degrés de liberté de l’aile. Plutôt que de poursuivre notre étude du concept complètement passif immédiatement, un concept de turbine semi-passive caractérisée par un mouvement de tangage passif et un mouvement de pilonnement contraint a été considéré. Des efficacités de l’ordre de 45% ont été atteintes, se comparant ainsi aux meilleures performances rapportées dans la littérature concernant les turbines à ailes oscillantes complètement contraintes. En plus de révéler le fort potentiel de ce concept de turbine semi-passive, cette étude nous a permis de nous concentrer sur certains aspects spécifiques concernant la dynamique d’une aile attachée par des ressorts en tangage. Cette analyse plus détaillée de la physique en jeu a été facilitée par le nombre réduit de paramètres structuraux en jeu par rapport à une turbine pour laquelle le mouvement de pilonnement est lui aussi passif. L’une des découvertes importantes est que le centre de masse doit être situé en aval du point de pivot afin de générer un transfert d’énergie du mouvement de pilonnement vers le mouvement de tangage par l’entremise du couplage inertiel entre les deux degrés de liberté. Ce transfert d’énergie est crucial puisque les mouvements de tangage optimaux nécessitent de l’énergie en moyenne pour être soutenus. De plus, un paramètre combinant les effets liés au moment d’inertie de l’aile par rapport à son point de pivot et à la raideur en tangage a été proposé. Ce paramètre permet de bien caractériser la dynamique du mouvement de tangage passif de la turbine semi-passive. Il permet aussi de déterminer la raideur requise pour différentes valeurs du moment d’inertie afin de maintenir une performance optimale de la turbine. Utilisant les connaissances acquises concernant la dynamique des mouvements de tangage passifs, le concept de turbine à aile oscillante complètement passive a été revisité. Les meilleures efficacités obtenues avec la turbine semi-passive ont été égalées et ont même été surpassées puisque qu’une efficacité de 53.8% a été atteinte. Les résultats ont aussi démontré qu’une performance optimale pouvait être maintenue sur de larges plages de valeurs en ce qui concerne la masse en pilonnement ainsi que le moment d’inertie par rapport au point de pivot, pourvu que les raideurs en pilonnement et en tangage soient ajustées correctement. / Due to the complexity of the mechanisms typically required when designing a flapping-foil turbine to prescribe specific heave and pitch motions, this thesis investigates the possibility of benefiting from unconstrained motions. In practice, this means that the foil is attached to the turbine structure with independent elastic supports in heave and in pitch, which consist in springs and dampers. Consequently, only an indirect control over the foil motions is possible through an adequate adjustment of the structural parameters affecting the foil dynamics, namely the inertial, damping and stiffness characteristics of the elastically-supported foil. Such motions are referred to as passive motions. As a first step, a turbine prototype with passive heave and pitch motions, thus being fully-passive, has been designed and tested in a water channel. This first phase of the present research work has confirmed the feasibility and the potential of this concept to extract a significant amount of energy from a fluid flow. However, the maximum efficiency that has been obtained is smaller than what can be achieved when prescribing specific foil motions. Following these experiments, a solid solver has been implemented and coupled with a Navier-Stokes fluid solver. Numerical simulations have been carried out to analyze the dynamics of both degrees of freedom in more details. Instead of immediately pursuing our study of the fully-passive flappingfoil turbine, a semi-passive concept, with a passive pitch motion and a prescribed heave motion, has been considered. Efficiencies of the order of 45% have been achieved, hence competing with the best performance reported in the literature for flapping-foil turbines with prescribed motions. In addition to revealing the great potential of this semi-passive turbine concept, this study has allowed us to focus on some specific aspects of the dynamics of passive pitch motions. This more detailed analysis of the physics at play has been facilitated by the reduced number of structural parameters affecting the foil dynamics compared to a turbine for which the foil is also elastically-supported in heave. One of the main findings is that the center of mass must be positioned downstream of the pitch axis in order to generate a net transfer of energy from the heave motion to the pitch motion via the inertial coupling between the two degrees of freedom. This energy transfer is crucial because optimal pitch motions require energy on average to be sustained. Moreover, a parameter combining the effects of the moment of inertia of the foil about the pitch axis and the pitch stiffness has been proposed. This parameter effectively characterizes the pitch dynamics of the semi-passive turbine. It also allows properly scaling the pitch stiffness when different moments of inertia are considered with the objective of maintaining an optimal turbine performance. Having improved our knowledge about the dynamics of passive pitch motions, the fully-passive flapping-foil turbine concept has been revisited. The best efficiencies obtained with the semi-passive concept have been matched, and even exceeded since an efficiency of 53.8% has been reached. The results have also demonstrated that an optimal performance can be maintained over large ranges of values regarding the heaving mass and the moment of inertia when the heave and pitch stiffness coefficients are adjusted adequately.
4

Étude des caractéristiques hydrodynamiques d'une aile oscillante

Faure, Jean-Frédérick 16 April 2018 (has links)
Ce mémoire s'inscrit dans le cadre plus général d 'un projet multidisciplinaire mené à l'Université Laval sur la technologie des aéro/hydrogénérateurs à ailes oscillantes. Cette partie du projet s'intéresse plus particulièrement à une mesure expérimentale des forces s'exerçant sur une aile oscillante. Pour y arriver, cette étude se découpe en deux phases bien distinctes. Tout d 'abord, il s'est révélé primordial de caractériser et d 'optimiser au mieux l'environnement de travail. Au cours de cette première phase, la mise en place de pertes de charge accompagnée par des mesures de vitesse dans le canal furent effectuées. De même, le système mécanique devait être piloté afin de reproduire le plus fidèlement possible les mouvements demandés. Par la suite, la deuxième phase impliquait la création puis l'utilisation d 'un instrument de mesure. Une comparaison avec des résultats issus de simulation numérique a alors permis de valider le concept de la balance hydrodynamique. Toutefois, plusieurs problèmes furent identifiés et des recommandations faites en vue de travaux futurs.
5

Oscillating-foils hydrokinetic turbine performance prediction : impact of turbulence modelling, of structure interference and of confinement

Gauthier, Étienne 23 April 2018 (has links)
Ce mémoire présente l’étude d’un prototype novateur d’hydrolienne basé sur l’utilisation d’ailes oscillantes. L’Hydrolienne à Ailes Oscillantes (HAO) est en développement depuis une dizaine d’années à l’Université Laval et le potentiel de cette technologie a d’ailleurs été vérifié numériquement et expérimentalement. Il est maintenant nécessaire de développer des outils permettant de prédire le comportement de l’hydrolienne lorsqu’installée en rivière ou en courant de marée. Pour ce faire, la dynamique des fluides numérique (CFD) est utilisée afin d’étudier l’impact de différents paramètres sur les performances de l’hydrolienne. L’étude présentée dans ce mémoire décrit notamment l’influence de la modélisation de la turbulence, de la présence de la structure de l’hydrolienne et des effets de confinement. Dans un premier temps, une étude sur l’aile oscillante comparant deux niveaux de modélisation de la turbulence est présentée. Cette étude a permis de montrer que malgré la présence de structures turbulentes plus fines dans le sillage de l’aile avec le modèle Scale-Adaptive Simulation, les signaux de forces instantanées ainsi que les paramètres moyens de performance sont très similaires à ceux obtenus avec le modèle Spalart-Allmaras qui est de fait utilisé pour simuler l’hydrolienne HAO complète. Ensuite, l’hydrolienne HAO constituée d’une paire d’ailes oscillantes à l’intérieur de sa structure est simulée. La technique de maillage par grilles superposées est utilisée afin de simuler le mouvement relatif des différents corps. Cette représentation de l’hydrolienne a permis d’étudier l’impact de la structure de celle-ci sur ses performances et ainsi d’optimiser sa forme afin de maximiser l’extraction d’énergie. En plus d’améliorer les performances, le carénage optimisé permet d’atténuer la sensibilité de l’hydrolienne à un écoulement amont désaligné. Le troisième principal aspect étudié est l’impact du confinement sur les performances de l’aile oscillante. En effet, les parois d’un canal d’essais, la topologie des fonds marins ainsi que la proximité de la surface de l’eau sont susceptibles d’avoir un impact sur les performances hydrodynamiques d’une hydrolienne. Les simulations réalisées sur une aile oscillante à différents niveaux de confinement ont montré que la puissance extraite augmente avec le niveau de blocage, mais en plus, que cette relation est linéaire pour un confinement inférieur à 40%. Finalement, une technique est suggérée afin de corréler les performances de l’aile oscillante dans différents environnements confinés. / This master’s thesis focuses on a novel prototype of hydrokinetic turbine based on oscillating foils. This concept known as HAO, which stands for “Hydrolienne à Ailes Oscillantes”, has been under development for about 10 years at Laval University and its potential in power extraction has been confirmed through numerical and experimental studies. Efforts are now focused on developing tools to predict the turbines behavior prior to its deployment in rivers or tidal streams. To achieve this goal, computational fluid dynamics (CFD) is used to investigate the impact of different parameters on the power-extraction performance of the HAO turbine. This study describes, among other things, the influence of the turbulence modeling, the presence of the frame structure and the blockage effects. First of all, a methodological study performed on a single oscillating foil is presented which compares two different turbulence modeling approaches. This work has shown that even if the Scale-Adaptive Simulation model presents finer structures in the wake of the foil, instantaneous forces and mean performance parameters closely match the results obtained with the Spalart-Allmaras model which is thus used to simulate the complete HAO hydrokinetic turbine prototype. In a second study, the HAO hydrokinetic turbine is simulated considering two hydrofoils oscillating within the frame structure. The overset mesh technique is used to represent the relative motions of the different bodies. This methodology allows to study the impact of the frame structure on the turbine performance and to optimize its shape in order to increase the power extracted. In addition to the enhanced performances, the optimized frame shape provides an improved robustness to misaligned upstream flows. The third principal aspect addressed in this thesis is the impact of flow confinement on the performance of oscillating-foils. In fact, towing tank walls, sea and river bed topology and free surface proximity are likely to have an impact on the turbine hydrodynamic performance. Simulations of a single oscillating foil for different blockage levels have shown that the power extracted increases with the blockage ratio, but more precisely that this relation is linear for confinement of less than 40%. Finally, a technique is suggested to correlate the performance of the oscillating-foils turbines in different confined environments.
6

Étude expérimentale de l'hydrodynamique d'une aile oscillante

Deschamp, Jérôme 16 April 2018 (has links)
Cette maîtrise s'inscrit dans la continuité d'un projet multidisciplinaire de grande envergure se déroulant à l'Université LAVAL, qui a pour but d'analyser les différentes caractéristiques et d'étudier la faisabilité d'une nouvelle technologie de production d'énergie : l'hydrogénérateur à ailes oscillantes. On s'intéresse ici à l'étude expérimentale des forces hydrodynamiques créées par un écoulement d'eau autour de ces ailes. M. Jean-Frederick Faure ayant déterminé dans un précédent mémoire les différentes technologies permettant la mesure de ces forces, ce mémoire présente essentiellement les travaux concernant l'amélioration du montage (installation et étalonnage des nouveaux instruments de mesure) et les résultats et analyses découlant des différents essais réalisés. Des efficacités énergétiques supérieures à 30% ont pu être trouvées et comparées favorablement avec les valeurs de simulations numériques effectuées à l'Université Laval. Une campagne d'essai a en outre permis d'évaluer l'influence des différents paramètres du mouvement (fréquence de cycle, amplitudes de pilonnement et de tangage) sur cette efficacité.
7

Étude numérique des effets de confinement 2D et 3D sur les turbines à pales oscillantes passives

Gunther, Kevin 12 April 2024 (has links)
Titre de l'écran-titre (visionné le 9 avril 2024) / Les hydroliennes à pale oscillante (HPO) complètement passives ont été optimisées avec les années pour atteindre des efficacités allant jusqu'à 51%. Ces hautes efficacités ont été démontrées sous l'hypothèse que l'écoulement est bidimensionnel et que la taille du canal n'affecte pas les performances de la turbine. Cependant, il en ressort un besoin de démontrer la robustesse de la turbine dans différents environnements d'écoulement. En effet, l'hydrolienne réelle est d'envergure finie, donc les extrémités de la pale engendrent des tourbillons de bout qui réduisent la portance en comparaison avec une turbine 2D. Aussi, l'aire de section de n'importe quel canal a une taille finie, donc la profondeur et la largeur de l'écoulement auront elles aussi un impact sur l'hydrolienne. Ce mémoire vise à démontrer la robustesse de la turbine à des changements géométriques de la forme du canal. Cette démonstration doit être perçue comme un commencement, et non une finalité, puisque de nombreux autres effets ne sont pas abordés ici. Cette robustesse est d'abord démontrée en évaluant qualitativement et quantitativement l'impact de la profondeur d'un canal 2D sur une HPO complètement passive qui fut optimisée par d'anciens étudiants au Laboratoire de Mécanique des Fluides Numérique. Il est observé que sans modification des paramètres structuraux qui influencent les mouvements non-contraints de la pale, la turbine devient chaotique et inopérable après une faible diminution de la profondeur du canal. Pour retrouver des niveaux de performance intéressants pour des canaux encore moins profonds, une méthode simple est proposée, basée sur un ajustement adéquat du générateur électrique. Grâce à cet ajustement, l'efficacité de la turbine augmente jusqu'à 70% pour des canaux hautement restreints. Enfin, la robustesse de la turbine est démontrée pour un canal 3D où la largeur du canal est variée. Encore ici, l'efficacité de la turbine augmente avec la diminution de l'aire de section du canal, à la différence que la force du générateur ne nécessite pas de modifications. Cette démonstration fut réalisée avec le souci de reproduire la turbine et les conditions d'écoulement correspondant à une étude expérimentale réalisée à la University of Victoria en parallèle à ce mémoire afin d'également montrer que la présente méthodologie numérique se compare bien aux résultats expérimentaux. L'importance de cette démonstration n'est pas à sous-estimer puisque dans le contexte des HPO complètement passives, aucune étude n'a encore validé les simulations sous des conditions d'opérations comparables, c'est-à-dire en incluant la tridimensionnalité de la turbine. / With the passing years, the fully-passive oscillating-foil turbines (OFT) have been optimised up to 51% of efficiency. These incredible efficiencies were made possible under the constrains that the flow is bidimensional and that the size of the channel does not affect the performances of the turbine. There is however a need to demonstrate the resilience of the turbine in different flow conditions. Indeed, the turbine is made up of a three-dimensional blade, so the presence of wing-tip vortices reduce the lift produced in comparison to 2D foils. Also, the cross-sectional area of any channel is finite, so the width and depth of the flow will also impact the turbine. The goal of this master thesis is to demonstrate the resilience of the turbine to geometric changes of the channel. This resilience demonstration must be seen as a start and not a finality since numerous other effects are not discussed here. This resilience is first demonstrated by qualitatively and quantitatively evaluating the channel's depth impact on a 2D fully-passive OFT that has been optimized by previous graduate students from the Laboratoire de Mécanique des Fluides Numérique. It has been observed that without modifications of the structural parameters influencing the unconstrained blade, the turbine becomes chaotic and uninteresting after a small decrease of the channel's depth. To retrieve good performances for shallow channels, a simple method is proposed, based on the adjustment of the electric generator. Thanks to this adjustment, the efficiency of the turbine increases up to 70% for highly confined channels. Finally, the resilience of the turbine is demonstrated again in a 3D channel where where the width is varied. Again, the efficiency of the turbine increases with a reduction of the cross-sectional area of the channel. Again, the efficiency of the turbine increased with a decrease of the cross-sectional area of the channel. The difference with the previous 2D study is that the force applied by the generator did not need any modifications. This demonstration has been planned to reproduce at the same time the turbine and the flow conditions used in a experimental study. The goal is to show that the current numerical methodology used compares itself well experimental results. The importance of this demonstration must not be underestimated since in the context of fully-passive OFTs, no study has adapted to compare both approaches in comparable operating conditions, meaning to include the 3D aspect of the turbine.
8

Conception d'un prototype expérimental d'hydrogénérateur à ailes oscillantes

Lalande, Guillaume January 2010 (has links)
L'objectif principal de ce mémoire est de présenter le processus de conception qui a mené à la réalisation d'un prototype expérimental d'hydrogénérateur à ailes oscillantes de 1 kW. Ce dernier a été réalisé de manière à démontrer le potentiel d'extraction d'énergie d'un hydrogénérateur à ailes oscillantes et pour valider certaines prédictions numériques effectuées par le Laboratoire de Mécanique des Fluides Numériques (LMFN) de l'Université Laval. Une revue de littérature présentant tous les hydrogénérateurs à aile(s) oscillante(s) répertoriés dans la littérature et leur principe de fonctionnement est d'abord présentée. Ensuite, la conception et l'expérimentation d'un premier prototype de petite taille est montrée. Des observations pertinentes quant à la conception du prototype de 1 kW sont aussi incluses. Suit alors la description explicite de la conception de l'embarcation motorisée permettant de faire fonctionner le prototype de 1 kW, la présentation du choix de la topologie de mécanisme et son processus d'optimisation et une description détaillée du prototype de 1 kW lui-même. Les résultats expérimentaux obtenus avec le prototype de 1 kW sont présentés de façon sommaire. Une analyse approfondie de ces derniers sera effectuée par Kinsey ([1]).
9

Synthèse de mécanismes pour une génératrice hydrolienne à ailes oscillantes

Demers, Louis. 12 April 2018 (has links)
L'objectif principal de ce mémoire est de mettre à jour les étapes parcourues dans la synthèse de mécanismes pour une génératrice éolienne/hydrolienne à ailes oscillantes. En effet, l'utilisation d'ailes oscillant dans un écoulement d'air ou d'eau afin d'en extraire de l'énergie nécessite un contrôle par un mécanisme contraignant cette dite oscillation. Une architecture doit donc être conçue afin d'imposer le mouvement adéquat de tangage et de pilonnement aux ailes, en plus de transférer aux alternateurs l'énergie cinétique extraite. De ce fait, l'analyse de l'aile oscillante à auto-compensation, un mécanisme proposé dans la littérature, est d'abord conduite. Deux lacunes sont ainsi identifiées : le manque d'adaptabilité du système à l'environnement et l'impossibilité d'atteindre des amplitudes de tangage supérieures à 62 °. S'ensuit alors une recherche de solutions pouvant procurer les mouvements établis qui se solde en l'élaboration de deux architectures à deux degrés de liberté : Valkyrie 2 et AEGIR. L'examen de celles-ci révèle ensuite que Valkyrie 2 est plus difficile à contrôler qu'AEGIR, puisque ce dernier possède une commande découplée. De son côté, Valkyrie 2 utilise seulement des barres et des liaisons rotoïdes, ce qui est un avantage du point de vue de l'efficacité énergétique. En étudiant par la suite la possibilité d'utiliser ces mécanismes dans des systèmes tandem, l'avantage du contrôle découplé d'AEGIR se fait plus important, puisqu'il est plus facile de diriger l'orientation des ailes par le pivot central à l'aide de courroies plutôt que par de nombreuses membrures. Finalement, la proposition d'ajouter des masses décentrées au système AEGIR tandem est apportée afin d'améliorer l'allure de la courbe de puissance en sortie du système.
10

Hydrogénérateur à ailes oscillantes : conception d'un système de conversion électromécanique

Méhut, Arnaud 18 April 2018 (has links)
Ce mémoire développe la partie électrique du projet de l’hydrogénérateur à ailes oscillantes. Le but est de fournir à l’hydrogénérateur un système de conversion électromécanique avec son électronique de commande. Pour cela, deux types de machines électriques à aimants permanents ont été étudiées afin de déterminer celle qui officiera comme génératrice électrique. La forme du couple hydrodynamique impose le recours à un multiplicateur de vitesse. Un outil de dimensionnement du multiplicateur a été développé à partir d’une approche phénoménologique. Puis le dimensionnement d’inerties est évoqué dans le processus d’optimisation. Un outil d’optimisation complet de la conversion électromécanique a été élaboré en statique. Un autre outil pour la simulation dynamique a été mis au point afin de réaliser un asservissement de la vitesse de la turbine. Le convertisseur statique joue un rôle crucial puisqu’il doit maintenir une ondulation de vitesse de ±10% autour de la consigne pour valider le concept.

Page generated in 0.1146 seconds