• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An analytical method to quantify 1,3-beta-delta-glucan using the LAL assay.

Foto, Mark S., January 1900 (has links)
Thesis (M.Sc.) - Carleton University, 2003. / Includes bibliographical references (p. 79-84). Also available in electronic format on the Internet.
2

Health implications of oil-to-coal conversion in New England power plants

Gruhl, Jim January 1976 (has links)
No description available.
3

Development of in vitro methods for toxicity assessment of workplace air contaminants

Bakand, Shahnaz, Safety Science, Faculty of Science, UNSW January 2006 (has links)
Exposure to air contaminants is significantly associated with both short-term and long-term health effects. However, the precise mechanisms that derive such effects are not always understood. While an extensive background database from in vivo toxicological studies have been developed, most toxicity data is from oral and dermal chemical exposures rather than inhalation exposure. There is a need to explore new alternative approaches to provide toxicity information particularly on this technically demanding area. This research explores the potential of in vitro methods for toxicity assessment of workplace air contaminants. A tiered approach for in vitro toxicity testing of workplace contaminants was designed in which appropriate air sampling and exposure techniques were developed. A diversified battery of in vitro assays including the MTS (tetrazolium salt, Promega), NRU (neutral red uptake, Sigma) and ATP (adenosine triphosphate, Promega) and a multiple human cell system including: A549- lung derived cells; HepG2-liver derived cells, and skin fibroblasts were used. Primarily the application and merits of in vitro methods for prediction of toxicity of selected workplace contaminants including Ammonium hydroxide, Cadmium chloride, Cobalt chloride, Formaldehyde, Glutaraldehyde, Manganese chloride, Mercuric chloride, Sodium dichromate, Sulphureous acid and Zinc chloride was confirmed. To study the toxicity of airborne contaminants an indirect exposure method was established using air sampling techniques followed by static and dynamic direct exposure methods by culturing cells on porous membranes to reveal representative data relating to human airborne exposures. The static method enabled the measurement of an airborne IC50 (50% inhibitory concentration) value for selected volatile organic compounds (VOCs) including: Xylene (IC50 = 5,350-8,200 ppm) and Toluene (IC50 = 10,500- 16,600 ppm) after 1 hr exposure. By implementing the dynamic method, airborne IC50 values were calculated for gaseous contaminants including: NO2 (IC50 = 11 ?? 3.54 ppm; NRU), SO2 (IC50 = 48 ?? 2.83 ppm; ATP) and NH3 (IC50 = 199 ?? 1.41 ppm; MTS). A higher sensitivity of in vitro methods was observed compared to in vivo published data. A range of in vitro bioassays in conjunction with exposure techniques developed in this thesis may provide an advanced technology for a comprehensive risk assessment of workplace air contaminants.
4

Development of in vitro methods for toxicity assessment of workplace air contaminants

Bakand, Shahnaz, Safety Science, Faculty of Science, UNSW January 2006 (has links)
Exposure to air contaminants is significantly associated with both short-term and long-term health effects. However, the precise mechanisms that derive such effects are not always understood. While an extensive background database from in vivo toxicological studies have been developed, most toxicity data is from oral and dermal chemical exposures rather than inhalation exposure. There is a need to explore new alternative approaches to provide toxicity information particularly on this technically demanding area. This research explores the potential of in vitro methods for toxicity assessment of workplace air contaminants. A tiered approach for in vitro toxicity testing of workplace contaminants was designed in which appropriate air sampling and exposure techniques were developed. A diversified battery of in vitro assays including the MTS (tetrazolium salt, Promega), NRU (neutral red uptake, Sigma) and ATP (adenosine triphosphate, Promega) and a multiple human cell system including: A549- lung derived cells; HepG2-liver derived cells, and skin fibroblasts were used. Primarily the application and merits of in vitro methods for prediction of toxicity of selected workplace contaminants including Ammonium hydroxide, Cadmium chloride, Cobalt chloride, Formaldehyde, Glutaraldehyde, Manganese chloride, Mercuric chloride, Sodium dichromate, Sulphureous acid and Zinc chloride was confirmed. To study the toxicity of airborne contaminants an indirect exposure method was established using air sampling techniques followed by static and dynamic direct exposure methods by culturing cells on porous membranes to reveal representative data relating to human airborne exposures. The static method enabled the measurement of an airborne IC50 (50% inhibitory concentration) value for selected volatile organic compounds (VOCs) including: Xylene (IC50 = 5,350-8,200 ppm) and Toluene (IC50 = 10,500- 16,600 ppm) after 1 hr exposure. By implementing the dynamic method, airborne IC50 values were calculated for gaseous contaminants including: NO2 (IC50 = 11 ?? 3.54 ppm; NRU), SO2 (IC50 = 48 ?? 2.83 ppm; ATP) and NH3 (IC50 = 199 ?? 1.41 ppm; MTS). A higher sensitivity of in vitro methods was observed compared to in vivo published data. A range of in vitro bioassays in conjunction with exposure techniques developed in this thesis may provide an advanced technology for a comprehensive risk assessment of workplace air contaminants.

Page generated in 0.1132 seconds