Spelling suggestions: "subject:"iir coequality inspection Station"" "subject:"iir coequality nspection Station""
1 |
Study of Application of Artifical Neural Network on the Trend of Ozone Concentration in the Urban Area, KaohsiungHsu, Ciung-wen 15 July 2008 (has links)
PM10 and ozone are the dominant air pollutants in the Urban Kaohsiung. Ozone is a secondary pollutant generated in the troposphere from the precursors nitrogen dioxide and non-methane hydrocarbons.
The trends of ozone concentrations first statistically are summarized utilizing the monitoring data during the period 1998¡Ð2007. All data are collected from four fixed-site air quality monitoring stations in Kaohsiung City. The results show that ozone concentration in Kaohsiung has one perennial peak concentration, occurring in October and March. The highest values occur in October and the secondary high value in March. The lowest values occur in the summer.
The monitor data possess timeliness of data and the non-linear dynamic tendency. Artificial Neural Network ¡]ANN¡^, a system recognition, self-study function and ability of the solution to non-linearity dynamic system problem, was used as a tool to analyze these monitor data. This work utilizing neural networks develops a model to predict the trend of ozone situations in the Urban Kaohsiung. The network was trained using meteorological factor and air quality data when the ozone concentrations are the highest.
The optimum set value of five parameters including date partition, hidden layer neurons, training function, leraning rate , and momentum coefficient were obtained based on trial and error methods. The simulated results of ozone concentration have a correlation coefficient within the range 0.865¡Ð0.899 and IOA within the range 0.927¡Ð0.934. The trend results of ozone concentration reflect strong relationships in all stations. The results of this study indicate that the artificial neural network (ANN) is a promising method for air pollution modeling.
|
Page generated in 0.1258 seconds