• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 125
  • 74
  • 36
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 717
  • 717
  • 280
  • 273
  • 159
  • 141
  • 104
  • 102
  • 75
  • 70
  • 67
  • 63
  • 58
  • 57
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Economics of Residential Heat Recovery Units

Redhwi, Muhammad N. 01 April 1981 (has links) (PDF)
Determining residential airconditioning waste heat recovery system costs and savings is achieved using a computer program. A worksheet is designed to accept consumer data as an input to the program. The program features load and waste heat recovery calculations on a monthly basis. Economic criteria, including rate of return, present worth, and payback period are computed. Sensitivity of these criteria to fuel escalation and consumer discount rate is demonstrated. the program provides the user with both thermal analysis and economic analysis summary reports.
92

Biofouling treatment of seawater cooling systems in Hong Kong

Wong, Yiu-ming, 黃耀明 January 1998 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
93

Investigation of an axisymmetrical chilled vertical jet projected into a stratified environment

Bailey, Thomas F January 2011 (has links)
Digitized by Kansas Correctional Industries
94

An investigation of the performance of cross-flow heat exchangers used in air conditioning

Kane, Eneas Dillon January 2011 (has links)
Typescript, etc. / Digitized by Kansas State University Libraries
95

Investigation of sub-wet bulb temperature evaporative cooling system for cooling in buildings

Alharbi, Abdulrahman January 2014 (has links)
The work presented in this thesis investigates design, computer modelling and testing a sub-wet bulb temperature evaporative cooling system for space air conditioning in buildings. The context of this evaporative cooling technology design is specifically targeted at locations with a hot and dry climate such as that prevailing in most regions of Middle East countries. The focus of this technology is to address the ever-escalating energy consumption in buildings for space cooling using mechanical vapour compression air conditioning systems. In this work, two evaporative cooling configurations both based on sub-wet bulb temperature principle have been studied. Furthermore, in these designs, it was sought to adopt porous ceramic materials as wet media for the evaporative cooler and as building element and use of heat pipes as heat transfer devices. In the first test rig, the prototype system uses porous ceramic materials as part of a functioning building wall element. Experimental and modelling results were obtained for ambient inlet air dry bulb temperature of 30 and 35oC, relative humidity ranging from 35% to 55% and intake air velocity less than 2 (m/s). It was found that the design achieved sub-wet bulb air temperature conditions and a maximum cooling capacity approaching 242 W/m2 of exposed ceramic material wet surface area. The wet bulb effectiveness of the system was higher than unity. The second design exploits the high thermal conductivity of heat pipes to be integrated as an effective heat transfer device with wet porous ceramic flat panels for evaporative cooling. The thermal performance of the prototype was presented and the computer model was validated using laboratory tests at temperatures of 30 and 35oC and relative humidity ranging from 35% to 55%. It was found that at airflow rates of 0.0031kg/s, inlet dry-bulb temperature of 35oC and relative humidity of 35%, the supply air could be cooled to below the inlet air wet bulb temperature and achieve a maximum cooling capacity of about 206 W/m2 of wet ceramic surface area. It was shown that the computer model and experimental tests are largely in good agreement. Finally, a brief case study on direct evaporative cooling thermal performance and environmental impact was conducted as part of a field trip study conducted on an existing large scale installation in Mina Valley, Saudi Arabia. It was found that the evaporative cooling systems used for space cooling in pilgrims’ accommodations and in train stations could reduce energy consumption by as much as 75% and cut carbon dioxide emission by 78% compared to traditional vapour compression systems. This demonstrates strongly that in a region with a hot and dry climate such as Mina Valley, evaporative cooling systems can be an environmentally friendly and energy-efficient cooling system compared to conventional vapour compression systems.
96

Two-phase local heat transfer correlations for non-ozone depleting refrigerant-oil mixtures

Boissieux, Xavier January 1998 (has links)
This thesis describes the work undertaken over a 3 year period under a Department of the Environment, Transport and the Regions (DETR) Partners in Technology programme in collaboration with four industrial partners. The aim of the work was to investigate the two-phase flow heat transfer and fluid dynamic performance of the non-ozone depleting refrigerants and lubricating oil mixtures in a horizontal tube. A single tube test facility was designed and built to determine local heat transfer coefficients and overall pressure drop for evaporation and condensation. A circulating pump system pressurised through an accumulator charged with nitrogen was selected to enable accurate setting of the evaporation and condensation conditions. The system was validated using R22. Tests were undertaken for R404A, R407C, Isceon 59 with a Polyol-ester lubricating oil. The experimental data consist of two-phase local heat transfer coefficients and overall pressure drops inside a smooth copper tube. Numerous data were obtained for evaporation and condensation, and constituted a large database of two-phase heat transfer coefficients. The experimental results were compared with several existing correlations traditionally used in heat exchanger design, to assess their suitability with the new refrigerants. As a result of these comparisons offering a poor agreement, a model characterising the variation of the local heat transfer coefficient was developed. The evaporation model consists in a modification of the Kattan et al. model (1998a, b & c). The new model predicts the experimental results well, with a standard deviation of 6.1% for refrigerant R407C and Isceon 59. The effects of lubricating oils on two-phase flow heat transfer are also discussed qualitatively. This work provides a design tool when dealing with the non-ozone depleting refrigerants, and recommendations are made on the use of several correlations.
97

Heat recovery in an air conditioning system

馬鏡澄, Ma, Kang-ching, Clement. January 1982 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Science in Engineering
98

A feasibility study of setting up a manufacturing arrangement in Chinafor air-conditioning equipment with respect to the market within Chinaand other South-east Asia countries

劉振麒, Lau, Chun-kay. January 1982 (has links)
published_or_final_version / Business Administration / Master / Master of Business Administration
99

Study of interactions of terminal units of a variable air volume air conditioning system

洪淵深, Hung, Yuen-sum. January 1997 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
100

Low energy, wind catcher assisted indirect-evaporative cooling system for building applications

Elzaidabi, Abdalla Ali Mohamed January 2009 (has links)
Increased consciousness of the environmental problems has aroused people’s interest of renewable energy systems, especially the application of green features in buildings. The demand for air conditioning / cooling in domestic and non-domestic buildings is rising throughout the world; this increases the reliance on conventional fuels and the global warming effect from greenhouse gas emissions. Passive cooling and energy efficient design can substantially reduce reliance on fuel based heating and cooling. Passive and Hybrid Downdraught Cooling, in different forms, is now technically viable in many parts of the world. This has been established through a combination of research projects. In some hot arid regions, a major part of the energy consumed consists of air-conditioning requirements. Alternative methods, using passive cooling techniques, can assist in reducing the conventional energy consumption in buildings. Evaporative cooling, which can be tracked back several hundreds of years in ancient Egypt and Persia [1–3], is one of the most effective strategies, because of the enormous latent heat needed for evaporation of water. Green features are architectural features used to mitigate migration of various air-borne pollutants and transmission of air from outside to indoor environment in an advantageous way [9]. The reduction of fossil fuel consumption and the associated decrease in greenhouse gas emissions are vital to combat global warming and this can be accomplished, in part, by the use of natural ventilation. To assess the performance of several innovative cooling systems devices and to develop improved models for more established technology, quantitative measurement of output was necessary. This was achieved in this study by the development of simply constructed low energy cooling systems which were calibrated by the innovative use of wind and water as a source. These devices were found to be consistent and accurate in measuring the temperature and cooling load from a number of devices. There were some problems in the original evaporative units. Therefore, a number of modifications have to be made to enhance the systems performance. The novel Windcatcher – PEC cooling system was assessed and different cooling loads were achieved.

Page generated in 0.4639 seconds