Spelling suggestions: "subject:"iir plasmas"" "subject:"rair plasmas""
1 |
Nanosecond Repetitively Pulsed Discharges in Atmospheric Pressure AirRusterholtz, Diane 20 December 2012 (has links) (PDF)
Nanosecond Repetitively Pulsed (NRP) discharges in atmospheric pressure air have many potential applications. Spark NRP discharges have applications in plasma assisted combustion. These discharges tend to stabilize lean flames which produce less NOx. Furthermore, an increase of several hundreds of Kelvins in less than 20 ns has been observed following NRP spark discharges, which could be used to create nanomaterials. NRP glow discharges, while creating an important number of actives species such as atomic oxygen, do not heat the ambient gas, which allows them to be used in temperature-sensitive applications such as bio-decontamination. In the first part of this thesis, we validate experimentally the mechanism that was proposed to explain the ultrafast heating observed. Time-resolved measurements of the absolute densities of two excited states of nitrogen and of the gas temperature have been performed with calibrated Optical Emission Spectroscopy. The second part of the thesis deals with the NRP glow regime. We have shown that its existence depends on several parameters, gas temperature and pressure, voltage across the electrodes, inter-electrode distance, pulse duration, radius of curvature of the electrodes. This regime had not been observed for temperatures lower than 750 K so far. Thanks to a detailed parametrical experimental study and the analysis of the obtained results, we have succeeded in identifying the NRP glow regime at ambient temperature and we observe a new type of "multi-channel" glow regime.
|
2 |
Nanosecond Repetitively Pulsed Discharges in Atmospheric Pressure Air / Décharges nanosecondes répétitives pulsées dans l'air à pression atmosphériqueRusterholtz, Diane 20 December 2012 (has links)
Les décharges Nanosecondes Répétitives Pulsées (NRP) dans l'air à pression atmosphérique ont de nombreuses applications potentielles. Ces applications dépendent de la nature des décharges NRP. Les décharges NRP spark stabilisent les flammes pauvres, qui émettent moins d’oxydes d’azote. Un chauffage ultrarapide de plusieurs milliers de degrés en une vingtaine de nanosecondes a également été observé dans de telles décharges, ce qui permettrait par exemple la production de nanomatériaux. Les décharges NRP glow ont l'avantage de produire un grand nombre d'espèces actives comme le radical O tout en échauffant très peu le gaz ambiant, ce qui les rend utilisables dans des applications sensibles à la température comme la bio-décontamination. Dans une première partie, nous validons expérimentalement le mécanisme chimique à l'origine du chauffage ultra-rapide grâce à des mesures résolues en temps de la densité absolue de deux états excités du diazote ainsi que des mesures de température du gaz. Dans un deuxième temps, nous montrons expérimentalement l'existence du régime glow à température ambiante, celui-ci n'ayant été observé jusqu’à présent que pour des températures supérieures à 750 K. En effet, nous avons démontré que son existence dépend de nombreux paramètres : température et pression du gaz, tension entre les électrodes, distance inter-électrodes, durée de l’impulsion de tension, rayon de courbure des électrodes. Grâce à une étude expérimentale paramétrique détaillée et à l’analyse des résultats obtenus, nous avons réussi à identifier les conditions permettant d’obtenir le régime NRP glow à température ambiante et un nouveau régime de décharge de type “multi-canal” a été mis en évidence. / Nanosecond Repetitively Pulsed (NRP) discharges in atmospheric pressure air have many potential applications. Spark NRP discharges have applications in plasma assisted combustion. These discharges tend to stabilize lean flames which produce less NOx. Furthermore, an increase of several hundreds of Kelvins in less than 20 ns has been observed following NRP spark discharges, which could be used to create nanomaterials. NRP glow discharges, while creating an important number of actives species such as atomic oxygen, do not heat the ambient gas, which allows them to be used in temperature-sensitive applications such as bio-decontamination. In the first part of this thesis, we validate experimentally the mechanism that was proposed to explain the ultrafast heating observed. Time-resolved measurements of the absolute densities of two excited states of nitrogen and of the gas temperature have been performed with calibrated Optical Emission Spectroscopy. The second part of the thesis deals with the NRP glow regime. We have shown that its existence depends on several parameters, gas temperature and pressure, voltage across the electrodes, inter-electrode distance, pulse duration, radius of curvature of the electrodes. This regime had not been observed for temperatures lower than 750 K so far. Thanks to a detailed parametrical experimental study and the analysis of the obtained results, we have succeeded in identifying the NRP glow regime at ambient temperature and we observe a new type of “multi-channel” glow regime.
|
3 |
Modélisation et simulations numériques du transfert radiatif dans les plasmas d'arc électrique / Modelling and numerical simulation of radiation transfer in electric arc plasmasKahhali, Nicolas 07 July 2009 (has links)
De nombreuses études, aussi bien expérimentales que théoriques, ont été menées pour l'industrie électrique afin de comprendre et d'être capable de prédire les mécanismes intervenant lors d'une coupure électrique par arc. Ces études ont montré la grande diversité et complexité des phénomènes physiques et chimiques mis en œuvre. L'arc électrique créé juste après la séparation des contacts est poussé par les forces électromagnétiques vers une zone d'extinction. Durant son développement et sa propagation, l'énergie lui est fournie par effet Joule et est dissipée par différents modes de transfert thermique. Son expansion rapide induit des effets de compressibilité avec la propagation d'ondes de pression. Le rayonnement intense du plasma créé, ainsi que les phénomènes aux pieds des électrodes, induisent une ablation des parois qui change la composition chimique du milieu et rend plus complexe la modélisation de l'ensemble des phénomènes couplés par hydrodynamique, électromagnétisme, transferts thermiques et diffusion d'espèces chimiques en régime fortement instationnaire. Le rôle du transfert radiatif est primordial dans la mesure où, d'une part, il conditionne le champ de température et donc les propriétés de transport, notamment électriques, et, d'autre part, participe pour une grande part à la thermo-dégradation des parois.La modélisation de l'ensemble des phénomènes physico-chimiques a beaucoup progressé durant les vingt dernières années mais le calcul du transfert radiatif demeure un point bloquant dans l'avancement des méthodes de modélisation.En effet, le champ de rayonnement est caractérisé par une luminance qui dépend de la longueur d'onde, de la position spatiale, de la direction de propagation, ainsi que du temps au travers ici des variations des champs de température et de la composition chimique.La prise en compte rigoureuse de toutes ces dépendances demeure inaccessible à l'heure actuelle pour des simulations complètes d'extinction d'arc, en particulier à cause de la complexité des spectres d'émission et d'absorption des milieux plasmas. Le recours à des modèles approchés pour le traitement spectral et/ou pour les dépendances géométriques et directionnelles est nécessaire.Ce travail a été mené en collaboration entre le Laboratoire EM2C et la société Schneider Electric. Il fait suite à des travaux de collaboration antérieurs dont l'objectif était la détermination des propriétés radiatives fondamentales des plasmas d'arc (Thèse S. Chauveau).Le but principal du présent travail est de développer des modèles approchés mais précis, ainsi que des outils de simulation numérique avec différents degrés de finesse, pour le calcul du champ de puissance radiative et des flux pariétaux dans des chambres de coupure électrique basse tension. Les modèles et outils développés doivent être implémentés dans des codes de simulation hydrodynamique dédiés soit à des géométries bidimensionnelles simplifiées, soit à des géométries industrielles complexes et tridimensionnelles. Ces outils doivent Les études expérimentales menées sur des maquettes représentatives des dispositifs industriels montrent la présence de vapeurs plastiques et métalliques dues à l'ablation et à l'érosion des parois. La composition chimique change par ailleurs fortement avec le temps entre la naissance et l'extinction de l'arc électrique. Bien que les modèles développés ici puissent être adaptés à cette composition chimique complexe, nous supposerons tout le long de ce travail que le milieu gazeux est un plasma d'air à l'équilibre thermique et chimique local. / Non fourni.
|
Page generated in 0.0695 seconds