• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robustness Analysis of Simultaneous Stabilization and its Applications in Flight Control

Saeedi, Yasaman 25 August 2011 (has links)
Simultaneous stabilization is an important problem in the design of robust controllers. It is the problem of designing a single feedback controller which will simultaneously stabilize every member of a finite collection of liner time-invariant systems. This provides simplicity and reliability which is desirable in aerospace applications. It can be used as a back-up control system in sophisticated airplanes, or an inexpensive primary one for small aircraft. In this work the robustness of the simultaneous stabilization problem, known as the Robust Simultaneous Stabilization (RSS) problem, is addressed. First, an optimization methodology for finding a solution to the Simultaneous Stabilization (SS) problem is proposed. Next, in order to provide simultaneous stability while maximizing the stability robustness bounds, a multiple-robustness optimization design methodology for the RSS problem is presented. The two proposed design methodologies are then compared in terms of robustness of the designed controller.
2

Robustness Analysis of Simultaneous Stabilization and its Applications in Flight Control

Saeedi, Yasaman 25 August 2011 (has links)
Simultaneous stabilization is an important problem in the design of robust controllers. It is the problem of designing a single feedback controller which will simultaneously stabilize every member of a finite collection of liner time-invariant systems. This provides simplicity and reliability which is desirable in aerospace applications. It can be used as a back-up control system in sophisticated airplanes, or an inexpensive primary one for small aircraft. In this work the robustness of the simultaneous stabilization problem, known as the Robust Simultaneous Stabilization (RSS) problem, is addressed. First, an optimization methodology for finding a solution to the Simultaneous Stabilization (SS) problem is proposed. Next, in order to provide simultaneous stability while maximizing the stability robustness bounds, a multiple-robustness optimization design methodology for the RSS problem is presented. The two proposed design methodologies are then compared in terms of robustness of the designed controller.

Page generated in 0.0944 seconds