• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Erosion in centrifugal compressor impellers

Harris, P. K. January 1996 (has links)
An experimental and theoretical study of erosion in centrifugal compressor impellers is presented. An experimental rig using laser anemometry techniques was employed to create a database of particle restitution ratios for a range of materials. This data was unique in that the particle rebound was measured in a quiescent condition where the aerodynamic effects had been minimised, and also parametric factors not previously available were included. These values were incorporated into the existing Particle Trajectory Code developed by Cranfield University and Rolls Royce PLC. The code is used to calculate the trajectories of discrete particles in three dimensional gas turbine geometries, and the ensuing erosion. It was modified to include the effects of the periodic boundary conditions, particle fragmentation, splitter blades, and variations in inlet dust concentration profile. Flowfield calculations were performed on a Rolls Royce GEM-2 and splittered GEM-60 impeller, which both represent the high pressure stage of the axial + centrifugal compression system of GEM engines. A procedure developed by Tourlidakis, for the analysis of steady viscous flow in high speed centrifugal compressors with tip leakage, was used to generate the flowfields. The GEM-2 impeller flowfield was analysed at 1009c speed, and validated with calculations and measurements which had been taken for previous projects. Simulated erosion data under the same conditions was checked using practical results obtained in a Rolls Royce PLC Helicopter Engine Environmental Protection Programme, and good agreement was achieved. In order to provide a qualitative, experimental assessment of erosion, a GEM-60 impeller was coated with four layers of paint of different colours. Two sizes of quartz particle, each at three different vane heights, were then seeded into the impeller while it was run cold at (the maximum) 70% speed. The erosion patterns generated compared well with the results generated by the Particle Trajectory Code.
2

Engine modeling, control, and synchronization for an unmanned aerial vehicle

Helmick, Daniel Martin 12 1900 (has links)
No description available.
3

Fire propagation and heat transfer modelling within the BR710 nacelle for certification purposes

Donaghy, Kevin Robert January 2000 (has links)
No description available.
4

Cooled Turbine Tip Design: Aerothermal Optimization for Engine Transients

Valeria Andreoli (6983015) 12 October 2021 (has links)
This thesis presents optimal cooled turbine tip designs that demonstrate a superior performance during an entire engine transient. The improvement of efficiency is obtained by optimizing the shape of the cooled turbine tip, considering all the phenomena associated with clearance variations. Optimal turbine blade tip designs not only enhance the aerodynamic performance, but they also reduce the thermal loads on one of the most vulnerable parts of the gas turbine. A multi-objective optimization was performed using a differential evolution strategy and Computational Fluid Dynamics software to solve Reynolds-Averaged Navier-Stokes equations. The results showed the strong impact of the over-tip coolant flows on the over-tip flow field. A detailed model for the scaling of tip convective heat flux based on Green’s functions was developed to predict the overtip heat flux at various gaps and engine conditions. The turbine aerothermal models integrated with the mathematical model of the entire engine were used to assess the effect of an improved turbine design on the overall gas turbine performance. Finally, this thesis proposes an experimental approach to validate the numerical models of the turbine aerothermal performance. This experimental procedure relies on an extensive computational analysis which resulted in the development of an unprecedented facility. This new facility, built at Purdue University, will be extensively used to evaluate transients with ad-hoc instrumentation designed using CFD. This work proposes a methodology to extrapolate the experimental results to engine conditions, in terms of aerothermal performance focusing on tip flow.
5

Performance Analysis of J85 Turbojet Engine Matching Thrust with Reduced Inlet Pressure to the Compressor

Yarlagadda, Santosh 14 June 2010 (has links)
No description available.
6

Numerical investigation of the sensitivity of forced response characteristics of bladed disks to mistuning

Myhre, Mikkel January 2003 (has links)
<p>Two state of the art finite element reduction techniquespreviously validated against the direct finite element method,one based on classical modal analysis and another based oncomponent mode synthesis, are applied for efficient mistunedfree vibration and forced response analysis of several bladeddisk geometries. The methods are first applied to two testcases in order to demonstrate the differences in computationalefficiency as well as to validate the methods againstexperimental data. As previous studies have indicated, nonoticeable differences in accuracy are detected for the currentapplications, while the method based on classical modalanalysis is significantly more efficient. Experimental data(mistuned frequencies and mode shapes) available for one of thetwo test cases are compared with numerical predictions, and agood match is obtained, which adds to the previous validationof the methods (against the direct finite element method).</p><p>The influence of blade-to-blade coupling and rotation speedon the sensitivity of bladed disks to mistuning is thenstudied. A transonic fan is considered with part span shroudsand without shrouds, respectively, constituting a high and alow blade-to-blade coupling case. For both cases, computationsare performed at rest as well as at various rotation speeds.Mistuning sensitivity is modelled as the dependence ofamplitude magnification on the standard deviation of bladestiffnesses. The finite element reduction technique based onclassical modal analysis is employed for the structuralanalysis. This reduced order model is solved for sets of randomblade stiffnesses with various standard deviations, i.e. MonteCarlo simulations. In order to reduce the sample size, thestatistical data is fitted to a Weibull (type III) parametermodel. Three different parameter estimation techniques areapplied and compared. The key role of blade-to-blade coupling,as well as the ratio of mistuning to coupling, is demonstratedfor the two cases. It is observed that mistuning sensitivityvaries significantly with rotation speed for both fans due toan associated variation in blade-to-blade coupling strength.Focusing on the effect of one specific engine order on themistuned response of the first bending modes, it is observedthat the mistuning sensitivity behaviour of the fan withoutshrouds is unaffected by rotation at its resonant condition,due to insignificant changes in coupling strength at thisspeed. The fan with shrouds, on the other hand, shows asignificantly different behaviour at rest and resonant speed,due to increased coupling under rotation. Comparing the twocases at resonant rotor speeds, the fan without shrouds is lessor equally sensitive to mistuning than the fan with shrouds inthe entire range of mistuning strengths considered.</p><p>This thesis’scientific contribution centres on themistuning sensitivity study, where the effects of shrouds androtation speed are quantified for realistic bladed diskgeometries. However, also the validation of two finite elementreduction techniques against experimental measurementsconstitutes an important contribution.</p>
7

Aerothermodynamic cycle design and optimization method for aircraft engines

Ford, Sean T. 12 January 2015 (has links)
This thesis addresses the need for an optimization method which can simultaneously optimize and balance an aerothermodynamic cycle. The method developed is be able to control cycle design variables at all operating conditions to meet the performance requirements while controlling any additional variables which may be used to optimize the cycle and maintaining all operating limits and engine constraints. The additional variables represent degrees of freedom above what is needed for conservation of mass and energy in the engine system. The motivation for such a method is derived from variable cycle engines, however it is general enough to use with most engine architectures. The method is similar to many optimization algorithms but differs in its implementation to an aircraft engine by combining the cycle balance and optimization using a Newton-Raphson cycle solver to efficiently find cycle designs for a wide range of engine architectures with extra degrees of freedom not needed to balance the cycle. Combination of the optimization with the cycle solver greatly speeds up the design and optimization process. A detailed process description for implementation of the method is provided as well as a proof of concept using several analytical test functions. Finally, the method is demonstrated on a separate flow turbofan model. Limitations and applications of the method are further explored including application to a multi-design point methodology.
8

Statistická analýza anomálií v senzorových datech / Statistical Analysis of Anomalies in Sensor Data

Gregorová, Kateřina January 2019 (has links)
This thesis deals with the failure mode detection of aircraft engines. The main approach to the detection is searching for anomalies in the sensor data. In order to get a comprehensive idea of the system and the particular sensors, the description of the whole system, namely the aircraft engine HTF7000 as well as the description of the sensors, are dealt with at the beginning of the thesis. A proposal of the anomaly detection algorithm based on three different detection methods is discussed in the second chapter. The above-mentioned methods are SVM (Support Vector Machine), K-means a ARIMA (Autoregressive Integrated Moving Average). The implementation of the algorithm including graphical user interface proposal are elaborated on in the next part of the thesis. Finally, statistical analysis of the results,the comparison of efficiency particular models and the discussion of outputs of the proposed algorithm can be found at the end of the thesis.
9

Numerical investigation of the sensitivity of forced response characteristics of bladed disks to mistuning

Myhre, Mikkel January 2003 (has links)
Two state of the art finite element reduction techniquespreviously validated against the direct finite element method,one based on classical modal analysis and another based oncomponent mode synthesis, are applied for efficient mistunedfree vibration and forced response analysis of several bladeddisk geometries. The methods are first applied to two testcases in order to demonstrate the differences in computationalefficiency as well as to validate the methods againstexperimental data. As previous studies have indicated, nonoticeable differences in accuracy are detected for the currentapplications, while the method based on classical modalanalysis is significantly more efficient. Experimental data(mistuned frequencies and mode shapes) available for one of thetwo test cases are compared with numerical predictions, and agood match is obtained, which adds to the previous validationof the methods (against the direct finite element method). The influence of blade-to-blade coupling and rotation speedon the sensitivity of bladed disks to mistuning is thenstudied. A transonic fan is considered with part span shroudsand without shrouds, respectively, constituting a high and alow blade-to-blade coupling case. For both cases, computationsare performed at rest as well as at various rotation speeds.Mistuning sensitivity is modelled as the dependence ofamplitude magnification on the standard deviation of bladestiffnesses. The finite element reduction technique based onclassical modal analysis is employed for the structuralanalysis. This reduced order model is solved for sets of randomblade stiffnesses with various standard deviations, i.e. MonteCarlo simulations. In order to reduce the sample size, thestatistical data is fitted to a Weibull (type III) parametermodel. Three different parameter estimation techniques areapplied and compared. The key role of blade-to-blade coupling,as well as the ratio of mistuning to coupling, is demonstratedfor the two cases. It is observed that mistuning sensitivityvaries significantly with rotation speed for both fans due toan associated variation in blade-to-blade coupling strength.Focusing on the effect of one specific engine order on themistuned response of the first bending modes, it is observedthat the mistuning sensitivity behaviour of the fan withoutshrouds is unaffected by rotation at its resonant condition,due to insignificant changes in coupling strength at thisspeed. The fan with shrouds, on the other hand, shows asignificantly different behaviour at rest and resonant speed,due to increased coupling under rotation. Comparing the twocases at resonant rotor speeds, the fan without shrouds is lessor equally sensitive to mistuning than the fan with shrouds inthe entire range of mistuning strengths considered. This thesis’scientific contribution centres on themistuning sensitivity study, where the effects of shrouds androtation speed are quantified for realistic bladed diskgeometries. However, also the validation of two finite elementreduction techniques against experimental measurementsconstitutes an important contribution. / NR 20140805
10

Revision Of The Aircraft Engines Preliminary Design Platform Of First Level

BENETHUILLERE, Quentin January 2014 (has links)
In the highly competitive aerospace industry, engine manufacturers must react very quickly and precisely to any demand emerging from aircraft manufacturers if they want to be positioned on the offer. This is especially true when answering to Requests For Information (RFI) based on preliminary design investigations of first level. In order to reduce the time needed to perform these costly operations while improving the performances achieved, Snecma wishes to develop tools for dimensioning the engine and also for assessing key parameters such as mass, emissions, fuel burn, costs, etc. Unfortunately, the set of tools and the process used at the present time for preliminary design investigations of first level are not sufficient to meet the high standards sought-after by the company in terms of time and performances. As a consequence, efforts must be spent on redefining the whole process and the tools it is based on; here is the mission that has been conferred upon me.   Multiple exchanges with performances engineers and specialists allowed to draw the current process for preliminary design investigations of first level and raise all the associated concerns. At the same time, a status of the existing tools (called modules in this report), mainly developed under Excel, has been realised in order to identify the range of action for today's investigations. A prototype has been developed under SDK Python with the aim of proving the feasibility of a solution to a difficulty that shows up in the process for each new investigation: the one of generating the workflow on the optimisation software Optimus. A target process has finally been discussed considering all the information collected, and would allow dividing by five the time needed to perform investigations compare to now. The prototype developed lead to interesting results and this solution could thus probably be integrated in the target process as it would allow saving one day of work for an engineer for each study to be carried out.   Solutions have been proposed to all the concerns identified in the process and they will have to be discussed with many actors and investigated further in the near future in order to set the target process that will allow meeting the final objective of answering all types of RFIs emitted by aircraft manufacturer in a very short time with a high level of confidence in the results.

Page generated in 0.0775 seconds