• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 21
  • 10
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 150
  • 48
  • 40
  • 38
  • 33
  • 30
  • 21
  • 20
  • 18
  • 18
  • 17
  • 17
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

High Lift and Flow Separation Control Via Moving Wall Effects: an Experimental and Numerical Investigation

Pechan, Tibor 13 December 2014 (has links)
A wing was designed with a moving surface high-lift device in the form of a rotating cylinder at the leading edge to improve low speed flight characteristics. This rotating cylinder accelerates the air flow over the top of the wing, effectively combining the concept of lift generated by an airfoil and lift generated by a rotating cylinder. This faster moving air over the top of the wing increases the pressure differential, thus increasing lift. The added momentum to the air flow results in delayed flow separation and a decrease in drag. For experimental testing, a wing was built using balsawood, basswood and MonoKote and was tested in a subsonic wind tunnel using two different tests stands. For validation and further testing, the high-lift device was modeled in Gambit and numerical simulations were performed using ANSYS Fluent. Experimental and numerical data show the high-lift device to be effective.
72

A computational study for the utilization of jet pulsations in gas turbine film cooling and flow control

Kartuzova, Olga Valeryevna 29 June 2010 (has links)
No description available.
73

REDUCED ORDER MODELING OF FLOW OVER A NACA 0015 AIRFOIL FOR FUTURE CONTROL APPLICATION

Sullivan, Taylor D. 11 August 2014 (has links)
No description available.
74

Nonlinear aerodynamic responses in tow tank study for a two dimensional NACA 0015 airfoil

Fang, Kuan-Chieh January 1992 (has links)
No description available.
75

Effect of aeroelasticity in tow tank strain gauge measurements on a NACA 0015 airfoil

Li, Sihao January 1993 (has links)
No description available.
76

Nonlinear normal force indicial responses for a 2-D NACA 0015 airfoil

Islam, Md Monirul January 1991 (has links)
No description available.
77

Investigation of a Laminar Airfoil with Flow Control and the Effect of Reynolds Number

Thake, Michael Patrick, Jr. 10 January 2011 (has links)
No description available.
78

Aero-Structural Optimization of a 5 MW Wind Turbine Rotor

Vesel, Richard W., Jr. 19 June 2012 (has links)
No description available.
79

Numerical Investigation of Subsonic Axial-Flow Tandem Airfoils for a Core Compressor Rotor

McGlumphy, Jonathan 18 February 2008 (has links)
The tandem airfoil has potential to do more work as a compressor blade than a single airfoil without incurring significantly higher losses. Although tandem blades are sometimes employed as stators, they have not been used in any known commercial rotors. The goal of this work is to evaluate the aerodynamic feasibility of using a tandem rotor in the rear stages of a core compressor. As such, the results are constrained to shock-free, fully turbulent flow. The work is divided into 2-D and 3-D simulations. The 3-D results are subject to an additional constraint: thick endwall boundary layers at the inlet. Existing literature data on tandem airfoils in 2-D rectilinear cascades have been compiled and presented in a Lieblein loss versus loading correlation. Large scatter in the data gave motivation to conduct an extensive 2-D CFD study evaluating the overall performance as a function of the relative positions of the forward and aft airfoils. CFD results were consistent with trends in the open literature, both of which indicate that a properly designed tandem airfoil can outperform a comparable single airfoil on- and off-design. The general agreement of the CFD and literature data serves as a validation for the computational approach. A high hub-to-tip ratio 3-D blade geometry was developed based upon the best-case tandem airfoil configuration from the 2-D study. The 3-D tandem rotor was simulated in isolation in order to scrutinize the fluid mechanisms of the rotor, which had not previously been well documented. A geometrically similar single blade rotor was also simulated under the same conditions for a baseline comparison. The tandem rotor was found to outperform its single blade counterpart by attaining a higher work coefficient, polytropic efficiency and numerical stall margin. An examination of the tandem rotor fluid mechanics revealed that the forward blade acts in a similar manner to a conventional rotor. The aft blade is strongly dependent upon the flow it receives from the forward blade, and tends to be more three-dimensional and non-uniform than the forward blade. / Ph. D.
80

Optimization Techniques Exploiting Problem Structure: Applications to Aerodynamic Design

Shenoy, Ajit R. 11 April 1997 (has links)
The research presented in this dissertation investigates the use of all-at-once methods applied to aerodynamic design. All-at-once schemes are usually based on the assumption of sufficient continuity in the constraints and objectives, and this assumption can be troublesome in the presence of shock discontinuities. Special treatment has to be considered for such problems and we study several approaches. Our all-at-once methods are based on the Sequential Quadratic Programming method, and are designed to exploit the structure inherent in a given problem. The first method is a Reduced Hessian formulation which projects the optimization problem to a lower dimension design space. The second method exploits the sparse structure in a given problem which can yield significant savings in terms of computational effort as well as storage requirements. An underlying theme in all our applications is that careful analysis of the given problem can often lead to an efficient implementation of these all-at-once methods. Chapter 2 describes a nozzle design problem involving one-dimensional transonic flow. An initial formulation as an optimal control problem allows us to solve the problem as as two-point boundary problem which provides useful insight into the nature of the problem. Using the Reduced Hessian formulation for this problem, we find that a conventional CFD method based on shock capturing produces poor performance. The numerical difficulties caused by the presence of the shock can be alleviated by reformulating the constraints so that the shock can be treated explicitly. This amounts to using a shock fitting technique. In Chapter 3, we study variants of a simplified temperature control problem. The control problem is solved using a sparse SQP scheme. We show that for problems where the underlying infinite-dimensional problem is well-posed, the optimizer performs well, whereas it fails to produce good results for problems where the underlying infinite-dimensional problem is ill-posed. A transonic airfoil design problem is studied in Chapter 4, using the Reduced SQP formulation. We propose a scheme for performing the optimization subtasks that is based on an Euler Implicit time integration scheme. The motivation is to preserve the solution-finding structure used in the analysis algorithm. Preliminary results obtained using this method are promising. Numerical results have been presented for all the problems described. / Ph. D.

Page generated in 0.0357 seconds